Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 49
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
De Gendt
1
75 kgVergaerde
3
74 kgVanderaerden
4
82 kgMaes
5
72 kgDe Buyst
6
72 kgBouwman
11
60 kgRickaert
12
88 kgVinjebo
13
67 kgVan Den Berg
14
77 kgRoosen
15
78 kgde Man
18
68 kgVallée
21
79 kgKerkhof
25
76 kgvan der Meer
28
82 kgLammertink
30
68 kgvan Bakel
58
62 kgVerdijck
90
79 kgWillems
94
72 kg
1
75 kgVergaerde
3
74 kgVanderaerden
4
82 kgMaes
5
72 kgDe Buyst
6
72 kgBouwman
11
60 kgRickaert
12
88 kgVinjebo
13
67 kgVan Den Berg
14
77 kgRoosen
15
78 kgde Man
18
68 kgVallée
21
79 kgKerkhof
25
76 kgvan der Meer
28
82 kgLammertink
30
68 kgvan Bakel
58
62 kgVerdijck
90
79 kgWillems
94
72 kg
Weight (KG) →
Result →
88
60
1
94
# | Rider | Weight (KG) |
---|---|---|
1 | DE GENDT Aimé | 75 |
3 | VERGAERDE Otto | 74 |
4 | VANDERAERDEN Niels | 82 |
5 | MAES Alexander | 72 |
6 | DE BUYST Jasper | 72 |
11 | BOUWMAN Koen | 60 |
12 | RICKAERT Jonas | 88 |
13 | VINJEBO Emil Mielke | 67 |
14 | VAN DEN BERG Maarten | 77 |
15 | ROOSEN Timo | 78 |
18 | DE MAN Jaap | 68 |
21 | VALLÉE Boris | 79 |
25 | KERKHOF Tim | 76 |
28 | VAN DER MEER Nick | 82 |
30 | LAMMERTINK Steven | 68 |
58 | VAN BAKEL Robbie | 62 |
90 | VERDIJCK Niels | 79 |
94 | WILLEMS Kenny | 72 |