Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 81
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Lammertink
2
68 kgVanderaerden
4
82 kgDe Buyst
8
72 kgRoosen
9
78 kgVallée
10
79 kgde Man
12
68 kgFolsach
15
81 kgVinjebo
21
67 kgDe Gendt
22
75 kgVergaerde
24
74 kgKerkhof
25
76 kgVan Den Berg
31
77 kgBouwman
35
60 kgRickaert
40
88 kgMaes
43
72 kgvan der Meer
68
82 kgWillems
81
72 kgVerdijck
91
79 kgvan Bakel
97
62 kgAerts
100
72 kg
2
68 kgVanderaerden
4
82 kgDe Buyst
8
72 kgRoosen
9
78 kgVallée
10
79 kgde Man
12
68 kgFolsach
15
81 kgVinjebo
21
67 kgDe Gendt
22
75 kgVergaerde
24
74 kgKerkhof
25
76 kgVan Den Berg
31
77 kgBouwman
35
60 kgRickaert
40
88 kgMaes
43
72 kgvan der Meer
68
82 kgWillems
81
72 kgVerdijck
91
79 kgvan Bakel
97
62 kgAerts
100
72 kg
Weight (KG) →
Result →
88
60
2
100
# | Rider | Weight (KG) |
---|---|---|
2 | LAMMERTINK Steven | 68 |
4 | VANDERAERDEN Niels | 82 |
8 | DE BUYST Jasper | 72 |
9 | ROOSEN Timo | 78 |
10 | VALLÉE Boris | 79 |
12 | DE MAN Jaap | 68 |
15 | FOLSACH Casper | 81 |
21 | VINJEBO Emil Mielke | 67 |
22 | DE GENDT Aimé | 75 |
24 | VERGAERDE Otto | 74 |
25 | KERKHOF Tim | 76 |
31 | VAN DEN BERG Maarten | 77 |
35 | BOUWMAN Koen | 60 |
40 | RICKAERT Jonas | 88 |
43 | MAES Alexander | 72 |
68 | VAN DER MEER Nick | 82 |
81 | WILLEMS Kenny | 72 |
91 | VERDIJCK Niels | 79 |
97 | VAN BAKEL Robbie | 62 |
100 | AERTS Toon | 72 |