Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.9 * weight + 181
This means that on average for every extra kilogram weight a rider loses -1.9 positions in the result.
De Gendt
1
75 kgVallée
2
79 kgMaes
3
72 kgFolsach
7
81 kgVergaerde
11
74 kgRoosen
12
78 kgRickaert
16
88 kgVanderaerden
30
82 kgLammertink
31
68 kgKerkhof
32
76 kgWillems
41
72 kgAerts
51
72 kgde Man
52
68 kgvan der Meer
53
82 kgVerdijck
54
79 kgVinjebo
62
67 kgBouwman
64
60 kgVan Den Berg
68
77 kgvan Bakel
76
62 kgDe Buyst
113
72 kg
1
75 kgVallée
2
79 kgMaes
3
72 kgFolsach
7
81 kgVergaerde
11
74 kgRoosen
12
78 kgRickaert
16
88 kgVanderaerden
30
82 kgLammertink
31
68 kgKerkhof
32
76 kgWillems
41
72 kgAerts
51
72 kgde Man
52
68 kgvan der Meer
53
82 kgVerdijck
54
79 kgVinjebo
62
67 kgBouwman
64
60 kgVan Den Berg
68
77 kgvan Bakel
76
62 kgDe Buyst
113
72 kg
Weight (KG) →
Result →
88
60
1
113
# | Rider | Weight (KG) |
---|---|---|
1 | DE GENDT Aimé | 75 |
2 | VALLÉE Boris | 79 |
3 | MAES Alexander | 72 |
7 | FOLSACH Casper | 81 |
11 | VERGAERDE Otto | 74 |
12 | ROOSEN Timo | 78 |
16 | RICKAERT Jonas | 88 |
30 | VANDERAERDEN Niels | 82 |
31 | LAMMERTINK Steven | 68 |
32 | KERKHOF Tim | 76 |
41 | WILLEMS Kenny | 72 |
51 | AERTS Toon | 72 |
52 | DE MAN Jaap | 68 |
53 | VAN DER MEER Nick | 82 |
54 | VERDIJCK Niels | 79 |
62 | VINJEBO Emil Mielke | 67 |
64 | BOUWMAN Koen | 60 |
68 | VAN DEN BERG Maarten | 77 |
76 | VAN BAKEL Robbie | 62 |
113 | DE BUYST Jasper | 72 |