Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.5 * weight + 159
This means that on average for every extra kilogram weight a rider loses -1.5 positions in the result.
Roosen
1
78 kgVallée
4
79 kgVanderaerden
10
82 kgvan der Meer
15
82 kgWillems
32
72 kgVergaerde
35
74 kgVan Den Berg
47
77 kgDe Gendt
49
75 kgde Man
52
68 kgBouwman
54
60 kgvan Bakel
63
62 kgMaes
64
72 kgKerkhof
65
76 kgAerts
66
72 kgRickaert
69
88 kgVinjebo
71
67 kgDe Buyst
88
72 kgVerdijck
100
79 kgLammertink
104
68 kg
1
78 kgVallée
4
79 kgVanderaerden
10
82 kgvan der Meer
15
82 kgWillems
32
72 kgVergaerde
35
74 kgVan Den Berg
47
77 kgDe Gendt
49
75 kgde Man
52
68 kgBouwman
54
60 kgvan Bakel
63
62 kgMaes
64
72 kgKerkhof
65
76 kgAerts
66
72 kgRickaert
69
88 kgVinjebo
71
67 kgDe Buyst
88
72 kgVerdijck
100
79 kgLammertink
104
68 kg
Weight (KG) →
Result →
88
60
1
104
# | Rider | Weight (KG) |
---|---|---|
1 | ROOSEN Timo | 78 |
4 | VALLÉE Boris | 79 |
10 | VANDERAERDEN Niels | 82 |
15 | VAN DER MEER Nick | 82 |
32 | WILLEMS Kenny | 72 |
35 | VERGAERDE Otto | 74 |
47 | VAN DEN BERG Maarten | 77 |
49 | DE GENDT Aimé | 75 |
52 | DE MAN Jaap | 68 |
54 | BOUWMAN Koen | 60 |
63 | VAN BAKEL Robbie | 62 |
64 | MAES Alexander | 72 |
65 | KERKHOF Tim | 76 |
66 | AERTS Toon | 72 |
69 | RICKAERT Jonas | 88 |
71 | VINJEBO Emil Mielke | 67 |
88 | DE BUYST Jasper | 72 |
100 | VERDIJCK Niels | 79 |
104 | LAMMERTINK Steven | 68 |