Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 36
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Lammertink
6
68 kgVallée
7
79 kgBouwman
11
60 kgvan der Meer
23
82 kgVan Den Berg
24
77 kgMaes
30
72 kgVanderaerden
31
82 kgRoosen
36
78 kgvan Bakel
40
62 kgVergaerde
41
74 kgRickaert
45
88 kgDe Gendt
47
75 kgde Man
54
68 kgDe Buyst
55
72 kgVinjebo
66
67 kgKerkhof
70
76 kgVerdijck
76
79 kgWillems
106
72 kg
6
68 kgVallée
7
79 kgBouwman
11
60 kgvan der Meer
23
82 kgVan Den Berg
24
77 kgMaes
30
72 kgVanderaerden
31
82 kgRoosen
36
78 kgvan Bakel
40
62 kgVergaerde
41
74 kgRickaert
45
88 kgDe Gendt
47
75 kgde Man
54
68 kgDe Buyst
55
72 kgVinjebo
66
67 kgKerkhof
70
76 kgVerdijck
76
79 kgWillems
106
72 kg
Weight (KG) →
Result →
88
60
6
106
# | Rider | Weight (KG) |
---|---|---|
6 | LAMMERTINK Steven | 68 |
7 | VALLÉE Boris | 79 |
11 | BOUWMAN Koen | 60 |
23 | VAN DER MEER Nick | 82 |
24 | VAN DEN BERG Maarten | 77 |
30 | MAES Alexander | 72 |
31 | VANDERAERDEN Niels | 82 |
36 | ROOSEN Timo | 78 |
40 | VAN BAKEL Robbie | 62 |
41 | VERGAERDE Otto | 74 |
45 | RICKAERT Jonas | 88 |
47 | DE GENDT Aimé | 75 |
54 | DE MAN Jaap | 68 |
55 | DE BUYST Jasper | 72 |
66 | VINJEBO Emil Mielke | 67 |
70 | KERKHOF Tim | 76 |
76 | VERDIJCK Niels | 79 |
106 | WILLEMS Kenny | 72 |