Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.8 * weight + 161
This means that on average for every extra kilogram weight a rider loses -1.8 positions in the result.
Pedersen
1
70 kgvan Aert
4
78 kgVan Den Berg
9
77 kgKrul
13
68 kgHermans
14
62 kgSoete
15
72 kgWijkel
16
73 kgMeiler
17
65 kgRapps
22
73 kgGoolaerts
23
80 kgDavies
35
66 kgBurton
39
55 kgCleppe
41
66 kgAriesen
46
70 kgScott
55
68 kgSloof
56
70 kgCools
63
65 kgJanssen
71
76 kgPearson
74
53 kgLaverack
121
62 kg
1
70 kgvan Aert
4
78 kgVan Den Berg
9
77 kgKrul
13
68 kgHermans
14
62 kgSoete
15
72 kgWijkel
16
73 kgMeiler
17
65 kgRapps
22
73 kgGoolaerts
23
80 kgDavies
35
66 kgBurton
39
55 kgCleppe
41
66 kgAriesen
46
70 kgScott
55
68 kgSloof
56
70 kgCools
63
65 kgJanssen
71
76 kgPearson
74
53 kgLaverack
121
62 kg
Weight (KG) →
Result →
80
53
1
121
# | Rider | Weight (KG) |
---|---|---|
1 | PEDERSEN Mads | 70 |
4 | VAN AERT Wout | 78 |
9 | VAN DEN BERG Maarten | 77 |
13 | KRUL Stef | 68 |
14 | HERMANS Quinten | 62 |
15 | SOETE Daan | 72 |
16 | WIJKEL Stan | 73 |
17 | MEILER Lukas | 65 |
22 | RAPPS Dario | 73 |
23 | GOOLAERTS Michael | 80 |
35 | DAVIES Scott | 66 |
39 | BURTON Germain | 55 |
41 | CLEPPE Nicolas | 66 |
46 | ARIESEN Tim | 70 |
55 | SCOTT Jacob | 68 |
56 | SLOOF Jordi | 70 |
63 | COOLS Alexander | 65 |
71 | JANSSEN Adriaan | 76 |
74 | PEARSON Daniel | 53 |
121 | LAVERACK Edward | 62 |