Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.7 * weight + 160
This means that on average for every extra kilogram weight a rider loses -1.7 positions in the result.
Pedersen
1
76 kgGoolaerts
3
80 kgVinjebo
4
67 kgJanssen
6
76 kgBurton
8
55 kgVan Den Berg
13
77 kgKrul
20
68 kgMeiler
21
65 kgHall
29
72 kgRapps
38
73 kgDavies
39
66 kgSoete
46
72 kgHermans
48
62 kgvan Aert
53
78 kgWijkel
55
73 kgAriesen
64
70 kgSloof
66
70 kgLaverack
67
62 kgScott
83
68 kgPearson
89
53 kgCools
91
65 kgCleppe
94
66 kg
1
76 kgGoolaerts
3
80 kgVinjebo
4
67 kgJanssen
6
76 kgBurton
8
55 kgVan Den Berg
13
77 kgKrul
20
68 kgMeiler
21
65 kgHall
29
72 kgRapps
38
73 kgDavies
39
66 kgSoete
46
72 kgHermans
48
62 kgvan Aert
53
78 kgWijkel
55
73 kgAriesen
64
70 kgSloof
66
70 kgLaverack
67
62 kgScott
83
68 kgPearson
89
53 kgCools
91
65 kgCleppe
94
66 kg
Weight (KG) →
Result →
80
53
1
94
# | Rider | Weight (KG) |
---|---|---|
1 | PEDERSEN Mads | 76 |
3 | GOOLAERTS Michael | 80 |
4 | VINJEBO Emil Mielke | 67 |
6 | JANSSEN Adriaan | 76 |
8 | BURTON Germain | 55 |
13 | VAN DEN BERG Maarten | 77 |
20 | KRUL Stef | 68 |
21 | MEILER Lukas | 65 |
29 | HALL Luc | 72 |
38 | RAPPS Dario | 73 |
39 | DAVIES Scott | 66 |
46 | SOETE Daan | 72 |
48 | HERMANS Quinten | 62 |
53 | VAN AERT Wout | 78 |
55 | WIJKEL Stan | 73 |
64 | ARIESEN Tim | 70 |
66 | SLOOF Jordi | 70 |
67 | LAVERACK Edward | 62 |
83 | SCOTT Jacob | 68 |
89 | PEARSON Daniel | 53 |
91 | COOLS Alexander | 65 |
94 | CLEPPE Nicolas | 66 |