Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 104
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Pedersen
1
76 kgGoolaerts
2
80 kgBurton
4
55 kgVinjebo
5
67 kgVan Den Berg
11
77 kgKrul
15
68 kgMeiler
16
65 kgRapps
28
73 kgDavies
29
66 kgHermans
31
62 kgSoete
35
72 kgvan Aert
38
78 kgWijkel
40
73 kgAriesen
46
70 kgSloof
47
70 kgScott
54
68 kgPearson
57
53 kgCools
58
65 kgCleppe
95
66 kgJanssen
115
76 kgLaverack
144
62 kg
1
76 kgGoolaerts
2
80 kgBurton
4
55 kgVinjebo
5
67 kgVan Den Berg
11
77 kgKrul
15
68 kgMeiler
16
65 kgRapps
28
73 kgDavies
29
66 kgHermans
31
62 kgSoete
35
72 kgvan Aert
38
78 kgWijkel
40
73 kgAriesen
46
70 kgSloof
47
70 kgScott
54
68 kgPearson
57
53 kgCools
58
65 kgCleppe
95
66 kgJanssen
115
76 kgLaverack
144
62 kg
Weight (KG) →
Result →
80
53
1
144
# | Rider | Weight (KG) |
---|---|---|
1 | PEDERSEN Mads | 76 |
2 | GOOLAERTS Michael | 80 |
4 | BURTON Germain | 55 |
5 | VINJEBO Emil Mielke | 67 |
11 | VAN DEN BERG Maarten | 77 |
15 | KRUL Stef | 68 |
16 | MEILER Lukas | 65 |
28 | RAPPS Dario | 73 |
29 | DAVIES Scott | 66 |
31 | HERMANS Quinten | 62 |
35 | SOETE Daan | 72 |
38 | VAN AERT Wout | 78 |
40 | WIJKEL Stan | 73 |
46 | ARIESEN Tim | 70 |
47 | SLOOF Jordi | 70 |
54 | SCOTT Jacob | 68 |
57 | PEARSON Daniel | 53 |
58 | COOLS Alexander | 65 |
95 | CLEPPE Nicolas | 66 |
115 | JANSSEN Adriaan | 76 |
144 | LAVERACK Edward | 62 |