Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 80
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Burton
1
55 kgGoolaerts
2
80 kgAriesen
7
70 kgPedersen
11
70 kgRapps
14
73 kgSoete
21
72 kgHermans
31
62 kgScott
37
68 kgWijkel
39
73 kgSloof
46
70 kgVinjebo
50
67 kgDavies
53
66 kgMeiler
55
65 kgKrul
58
68 kgPearson
62
53 kgVan Den Berg
63
77 kgvan Aert
64
78 kgCools
70
65 kgCleppe
105
66 kgJanssen
127
76 kgLaverack
144
62 kg
1
55 kgGoolaerts
2
80 kgAriesen
7
70 kgPedersen
11
70 kgRapps
14
73 kgSoete
21
72 kgHermans
31
62 kgScott
37
68 kgWijkel
39
73 kgSloof
46
70 kgVinjebo
50
67 kgDavies
53
66 kgMeiler
55
65 kgKrul
58
68 kgPearson
62
53 kgVan Den Berg
63
77 kgvan Aert
64
78 kgCools
70
65 kgCleppe
105
66 kgJanssen
127
76 kgLaverack
144
62 kg
Weight (KG) →
Result →
80
53
1
144
# | Rider | Weight (KG) |
---|---|---|
1 | BURTON Germain | 55 |
2 | GOOLAERTS Michael | 80 |
7 | ARIESEN Tim | 70 |
11 | PEDERSEN Mads | 70 |
14 | RAPPS Dario | 73 |
21 | SOETE Daan | 72 |
31 | HERMANS Quinten | 62 |
37 | SCOTT Jacob | 68 |
39 | WIJKEL Stan | 73 |
46 | SLOOF Jordi | 70 |
50 | VINJEBO Emil Mielke | 67 |
53 | DAVIES Scott | 66 |
55 | MEILER Lukas | 65 |
58 | KRUL Stef | 68 |
62 | PEARSON Daniel | 53 |
63 | VAN DEN BERG Maarten | 77 |
64 | VAN AERT Wout | 78 |
70 | COOLS Alexander | 65 |
105 | CLEPPE Nicolas | 66 |
127 | JANSSEN Adriaan | 76 |
144 | LAVERACK Edward | 62 |