Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.9 * weight + 166
This means that on average for every extra kilogram weight a rider loses -1.9 positions in the result.
Pedersen
1
76 kgVinjebo
4
67 kgVan Den Berg
6
77 kgKrul
11
68 kgHermans
12
62 kgSoete
13
72 kgvan Aert
14
78 kgWijkel
15
73 kgMeiler
16
65 kgRapps
20
73 kgGoolaerts
23
80 kgDavies
37
66 kgBurton
40
55 kgCools
42
65 kgCleppe
43
66 kgAriesen
50
70 kgSloof
59
70 kgScott
60
68 kgJanssen
75
76 kgPearson
78
53 kgLaverack
138
62 kg
1
76 kgVinjebo
4
67 kgVan Den Berg
6
77 kgKrul
11
68 kgHermans
12
62 kgSoete
13
72 kgvan Aert
14
78 kgWijkel
15
73 kgMeiler
16
65 kgRapps
20
73 kgGoolaerts
23
80 kgDavies
37
66 kgBurton
40
55 kgCools
42
65 kgCleppe
43
66 kgAriesen
50
70 kgSloof
59
70 kgScott
60
68 kgJanssen
75
76 kgPearson
78
53 kgLaverack
138
62 kg
Weight (KG) →
Result →
80
53
1
138
# | Rider | Weight (KG) |
---|---|---|
1 | PEDERSEN Mads | 76 |
4 | VINJEBO Emil Mielke | 67 |
6 | VAN DEN BERG Maarten | 77 |
11 | KRUL Stef | 68 |
12 | HERMANS Quinten | 62 |
13 | SOETE Daan | 72 |
14 | VAN AERT Wout | 78 |
15 | WIJKEL Stan | 73 |
16 | MEILER Lukas | 65 |
20 | RAPPS Dario | 73 |
23 | GOOLAERTS Michael | 80 |
37 | DAVIES Scott | 66 |
40 | BURTON Germain | 55 |
42 | COOLS Alexander | 65 |
43 | CLEPPE Nicolas | 66 |
50 | ARIESEN Tim | 70 |
59 | SLOOF Jordi | 70 |
60 | SCOTT Jacob | 68 |
75 | JANSSEN Adriaan | 76 |
78 | PEARSON Daniel | 53 |
138 | LAVERACK Edward | 62 |