Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.6 * weight + 177
This means that on average for every extra kilogram weight a rider loses -1.6 positions in the result.
van Aert
6
78 kgPedersen
7
70 kgBurton
10
55 kgAriesen
12
70 kgGoolaerts
17
80 kgScott
30
68 kgJanssen
37
76 kgRapps
45
73 kgWijkel
60
73 kgDavies
66
66 kgPearson
76
53 kgMeiler
89
65 kgVan Den Berg
95
77 kgLaverack
98
62 kgSloof
102
70 kgSoete
106
72 kgKrul
110
68 kgHermans
111
62 kgCleppe
118
66 kgCools
130
65 kg
6
78 kgPedersen
7
70 kgBurton
10
55 kgAriesen
12
70 kgGoolaerts
17
80 kgScott
30
68 kgJanssen
37
76 kgRapps
45
73 kgWijkel
60
73 kgDavies
66
66 kgPearson
76
53 kgMeiler
89
65 kgVan Den Berg
95
77 kgLaverack
98
62 kgSloof
102
70 kgSoete
106
72 kgKrul
110
68 kgHermans
111
62 kgCleppe
118
66 kgCools
130
65 kg
Weight (KG) →
Result →
80
53
6
130
# | Rider | Weight (KG) |
---|---|---|
6 | VAN AERT Wout | 78 |
7 | PEDERSEN Mads | 70 |
10 | BURTON Germain | 55 |
12 | ARIESEN Tim | 70 |
17 | GOOLAERTS Michael | 80 |
30 | SCOTT Jacob | 68 |
37 | JANSSEN Adriaan | 76 |
45 | RAPPS Dario | 73 |
60 | WIJKEL Stan | 73 |
66 | DAVIES Scott | 66 |
76 | PEARSON Daniel | 53 |
89 | MEILER Lukas | 65 |
95 | VAN DEN BERG Maarten | 77 |
98 | LAVERACK Edward | 62 |
102 | SLOOF Jordi | 70 |
106 | SOETE Daan | 72 |
110 | KRUL Stef | 68 |
111 | HERMANS Quinten | 62 |
118 | CLEPPE Nicolas | 66 |
130 | COOLS Alexander | 65 |