Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.5 * weight + 226
This means that on average for every extra kilogram weight a rider loses -2.5 positions in the result.
Pedersen
1
76 kgRapps
6
73 kgAriesen
7
70 kgVan Den Berg
23
77 kgScott
25
68 kgWijkel
26
73 kgCools
28
65 kgDavies
36
66 kgvan Aert
41
78 kgGoolaerts
46
80 kgPearson
48
53 kgJanssen
54
76 kgLaverack
63
62 kgKrul
83
68 kgSloof
86
70 kgHermans
88
62 kgSoete
95
72 kgCleppe
104
66 kgMeiler
123
65 kgBurton
126
55 kg
1
76 kgRapps
6
73 kgAriesen
7
70 kgVan Den Berg
23
77 kgScott
25
68 kgWijkel
26
73 kgCools
28
65 kgDavies
36
66 kgvan Aert
41
78 kgGoolaerts
46
80 kgPearson
48
53 kgJanssen
54
76 kgLaverack
63
62 kgKrul
83
68 kgSloof
86
70 kgHermans
88
62 kgSoete
95
72 kgCleppe
104
66 kgMeiler
123
65 kgBurton
126
55 kg
Weight (KG) →
Result →
80
53
1
126
# | Rider | Weight (KG) |
---|---|---|
1 | PEDERSEN Mads | 76 |
6 | RAPPS Dario | 73 |
7 | ARIESEN Tim | 70 |
23 | VAN DEN BERG Maarten | 77 |
25 | SCOTT Jacob | 68 |
26 | WIJKEL Stan | 73 |
28 | COOLS Alexander | 65 |
36 | DAVIES Scott | 66 |
41 | VAN AERT Wout | 78 |
46 | GOOLAERTS Michael | 80 |
48 | PEARSON Daniel | 53 |
54 | JANSSEN Adriaan | 76 |
63 | LAVERACK Edward | 62 |
83 | KRUL Stef | 68 |
86 | SLOOF Jordi | 70 |
88 | HERMANS Quinten | 62 |
95 | SOETE Daan | 72 |
104 | CLEPPE Nicolas | 66 |
123 | MEILER Lukas | 65 |
126 | BURTON Germain | 55 |