Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.3 * weight - 64
This means that on average for every extra kilogram weight a rider loses 1.3 positions in the result.
Planckaert
1
69 kgPedersen
2
71 kgGregaard
3
66 kgGoossens
4
64 kgVan Der Beken
10
64 kgMenten
11
68 kgShaw
14
63 kgTalen
23
76 kgJoseph
24
71 kgJakobsen
25
78 kgWilliams
30
59 kgDe Poorter
35
68 kgTimmermans
37
72 kgde Bod
41
66 kgCornelisse
51
73.5 kgDe Decker
55
68 kgLeysen
59
78 kg
1
69 kgPedersen
2
71 kgGregaard
3
66 kgGoossens
4
64 kgVan Der Beken
10
64 kgMenten
11
68 kgShaw
14
63 kgTalen
23
76 kgJoseph
24
71 kgJakobsen
25
78 kgWilliams
30
59 kgDe Poorter
35
68 kgTimmermans
37
72 kgde Bod
41
66 kgCornelisse
51
73.5 kgDe Decker
55
68 kgLeysen
59
78 kg
Weight (KG) →
Result →
78
59
1
59
# | Rider | Weight (KG) |
---|---|---|
1 | PLANCKAERT Emiel | 69 |
2 | PEDERSEN Casper | 71 |
3 | GREGAARD Jonas | 66 |
4 | GOOSSENS Kobe | 64 |
10 | VAN DER BEKEN Arno | 64 |
11 | MENTEN Milan | 68 |
14 | SHAW James | 63 |
23 | TALEN Jordi | 76 |
24 | JOSEPH Thomas | 71 |
25 | JAKOBSEN Fabio | 78 |
30 | WILLIAMS Stephen | 59 |
35 | DE POORTER Maxime | 68 |
37 | TIMMERMANS Justin | 72 |
41 | DE BOD Stefan | 66 |
51 | CORNELISSE Mitchell | 73.5 |
55 | DE DECKER Alfdan | 68 |
59 | LEYSEN Senne | 78 |