Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 22
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Porzner
1
75 kgHonoré
3
68 kgMenten
4
68 kgMandrysch
5
73 kgDe Poorter
8
68 kgAerts
10
76 kgShaw
11
63 kgDe Decker
13
68 kgGregaard
14
66 kgvan den Berg
16
78 kgFrahm
18
90 kgTreubel
21
79 kgSchinnagel
27
68 kgFranz
28
62 kgMengoulas
30
66 kgHenn
40
64 kgBeullens
41
79 kg
1
75 kgHonoré
3
68 kgMenten
4
68 kgMandrysch
5
73 kgDe Poorter
8
68 kgAerts
10
76 kgShaw
11
63 kgDe Decker
13
68 kgGregaard
14
66 kgvan den Berg
16
78 kgFrahm
18
90 kgTreubel
21
79 kgSchinnagel
27
68 kgFranz
28
62 kgMengoulas
30
66 kgHenn
40
64 kgBeullens
41
79 kg
Weight (KG) →
Result →
90
62
1
41
# | Rider | Weight (KG) |
---|---|---|
1 | PORZNER Manuel | 75 |
3 | HONORÉ Mikkel Frølich | 68 |
4 | MENTEN Milan | 68 |
5 | MANDRYSCH John | 73 |
8 | DE POORTER Maxime | 68 |
10 | AERTS Thijs | 76 |
11 | SHAW James | 63 |
13 | DE DECKER Alfdan | 68 |
14 | GREGAARD Jonas | 66 |
16 | VAN DEN BERG Julius | 78 |
18 | FRAHM Jasper | 90 |
21 | TREUBEL Pascal | 79 |
27 | SCHINNAGEL Johannes | 68 |
28 | FRANZ Marcel | 62 |
30 | MENGOULAS Alex | 66 |
40 | HENN Luca | 64 |
41 | BEULLENS Cedric | 79 |