Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 49
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
De Pestel
1
74 kgTulner
2
62 kgSchelling
3
66 kgDriesen
4
71 kgÖzgür
7
75 kgEekhoff
11
75 kgMeeus
12
80 kgvan Sintmaartensdijk
14
77 kgRombouts
15
63 kgVan Moer
16
79 kgSiebens
18
62 kgWeemaes
22
73 kgDekker
23
80 kgReynders
24
76 kgHerregodts
25
70 kgQuarterman
29
75 kgDebeaumarché
34
75 kgWijfje
52
66 kgPrangel
61
74 kgEgholm
63
69 kgTiryaki
68
67 kg
1
74 kgTulner
2
62 kgSchelling
3
66 kgDriesen
4
71 kgÖzgür
7
75 kgEekhoff
11
75 kgMeeus
12
80 kgvan Sintmaartensdijk
14
77 kgRombouts
15
63 kgVan Moer
16
79 kgSiebens
18
62 kgWeemaes
22
73 kgDekker
23
80 kgReynders
24
76 kgHerregodts
25
70 kgQuarterman
29
75 kgDebeaumarché
34
75 kgWijfje
52
66 kgPrangel
61
74 kgEgholm
63
69 kgTiryaki
68
67 kg
Weight (KG) →
Result →
80
62
1
68
# | Rider | Weight (KG) |
---|---|---|
1 | DE PESTEL Sander | 74 |
2 | TULNER Rens | 62 |
3 | SCHELLING Ide | 66 |
4 | DRIESEN Jarne | 71 |
7 | ÖZGÜR Batuhan | 75 |
11 | EEKHOFF Nils | 75 |
12 | MEEUS Jordi | 80 |
14 | VAN SINTMAARTENSDIJK Daan | 77 |
15 | ROMBOUTS Seppe | 63 |
16 | VAN MOER Brent | 79 |
18 | SIEBENS Gianni | 62 |
22 | WEEMAES Sasha | 73 |
23 | DEKKER David | 80 |
24 | REYNDERS Jens | 76 |
25 | HERREGODTS Rune | 70 |
29 | QUARTERMAN Charlie | 75 |
34 | DEBEAUMARCHÉ Nicolas | 75 |
52 | WIJFJE Tom | 66 |
61 | PRANGEL Kristo | 74 |
63 | EGHOLM Jakob | 69 |
68 | TIRYAKI Oguzhan | 67 |