Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 79
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Karpenko
1
77 kgGloag
3
60 kgRootkin-Gray
4
67 kgUhlig
9
71 kgHuys
11
77 kgKurits
16
74 kgNys
24
64 kgWood
40
64 kgThomas
41
61 kgStevens
42
72 kgRasenberg
52
78 kgHuybrechts
54
55 kgBudenaers
61
63 kgCoppens
70
75 kgBoons
74
79 kgAndersons
76
77 kgLond
80
65 kgDankbārs
88
69 kgCas
93
58 kgSzékely
94
75 kgSchomburg
95
76 kgZhaparuly
121
59 kg
1
77 kgGloag
3
60 kgRootkin-Gray
4
67 kgUhlig
9
71 kgHuys
11
77 kgKurits
16
74 kgNys
24
64 kgWood
40
64 kgThomas
41
61 kgStevens
42
72 kgRasenberg
52
78 kgHuybrechts
54
55 kgBudenaers
61
63 kgCoppens
70
75 kgBoons
74
79 kgAndersons
76
77 kgLond
80
65 kgDankbārs
88
69 kgCas
93
58 kgSzékely
94
75 kgSchomburg
95
76 kgZhaparuly
121
59 kg
Weight (KG) →
Result →
79
55
1
121
# | Rider | Weight (KG) |
---|---|---|
1 | KARPENKO Gleb | 77 |
3 | GLOAG Thomas | 60 |
4 | ROOTKIN-GRAY Jack | 67 |
9 | UHLIG Henri | 71 |
11 | HUYS Branko | 77 |
16 | KURITS Joonas | 74 |
24 | NYS Thibau | 64 |
40 | WOOD George | 64 |
41 | THOMAS Théo | 61 |
42 | STEVENS Daan | 72 |
52 | RASENBERG Martijn | 78 |
54 | HUYBRECHTS Sander | 55 |
61 | BUDENAERS Thomas | 63 |
70 | COPPENS Michiel | 75 |
74 | BOONS Jente | 79 |
76 | ANDERSONS Roberts | 77 |
80 | LOND Daniel | 65 |
88 | DANKBĀRS Oskars | 69 |
93 | CAS Stijn | 58 |
94 | SZÉKELY Nathan | 75 |
95 | SCHOMBURG Marten | 76 |
121 | ZHAPARULY Bauyrzhan | 59 |