Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight + 4
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Uhlig
3
69 kgThomas
6
61 kgCas
7
58 kgHuys
10
77 kgBoons
14
79 kgNys
17
64 kgWood
26
64 kgRootkin-Gray
28
67 kgKarpenko
29
77 kgLond
32
65 kgZhaparuly
37
59 kgKurits
49
74 kgSchomburg
59
76 kgStevens
61
72 kgDankbārs
81
69 kgBudenaers
83
63 kgGloag
84
60 kgCoppens
97
75 kgSzékely
101
75 kgAndersons
106
77 kgHuybrechts
115
55 kgRasenberg
119
78 kg
3
69 kgThomas
6
61 kgCas
7
58 kgHuys
10
77 kgBoons
14
79 kgNys
17
64 kgWood
26
64 kgRootkin-Gray
28
67 kgKarpenko
29
77 kgLond
32
65 kgZhaparuly
37
59 kgKurits
49
74 kgSchomburg
59
76 kgStevens
61
72 kgDankbārs
81
69 kgBudenaers
83
63 kgGloag
84
60 kgCoppens
97
75 kgSzékely
101
75 kgAndersons
106
77 kgHuybrechts
115
55 kgRasenberg
119
78 kg
Weight (KG) →
Result →
79
55
3
119
# | Rider | Weight (KG) |
---|---|---|
3 | UHLIG Henri | 69 |
6 | THOMAS Théo | 61 |
7 | CAS Stijn | 58 |
10 | HUYS Branko | 77 |
14 | BOONS Jente | 79 |
17 | NYS Thibau | 64 |
26 | WOOD George | 64 |
28 | ROOTKIN-GRAY Jack | 67 |
29 | KARPENKO Gleb | 77 |
32 | LOND Daniel | 65 |
37 | ZHAPARULY Bauyrzhan | 59 |
49 | KURITS Joonas | 74 |
59 | SCHOMBURG Marten | 76 |
61 | STEVENS Daan | 72 |
81 | DANKBĀRS Oskars | 69 |
83 | BUDENAERS Thomas | 63 |
84 | GLOAG Thomas | 60 |
97 | COPPENS Michiel | 75 |
101 | SZÉKELY Nathan | 75 |
106 | ANDERSONS Roberts | 77 |
115 | HUYBRECHTS Sander | 55 |
119 | RASENBERG Martijn | 78 |