Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 122
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
De Schuyteneer
1
74 kgHeymans
4
63 kgJurriaans
9
70 kgvan Beurden
11
58 kgVerhagen
14
67 kgBrethouwer
17
69 kgDockx
18
61 kgSaul
30
65 kgKongstad
32
75 kgVan den Branden
34
78 kgVanhaecke
41
65 kgVandenabeele
47
64 kgvan Zuidam
50
63 kgDe Neve
107
58 kgToftemark
113
73 kgBartelet
133
62 kg
1
74 kgHeymans
4
63 kgJurriaans
9
70 kgvan Beurden
11
58 kgVerhagen
14
67 kgBrethouwer
17
69 kgDockx
18
61 kgSaul
30
65 kgKongstad
32
75 kgVan den Branden
34
78 kgVanhaecke
41
65 kgVandenabeele
47
64 kgvan Zuidam
50
63 kgDe Neve
107
58 kgToftemark
113
73 kgBartelet
133
62 kg
Weight (KG) →
Result →
78
58
1
133
# | Rider | Weight (KG) |
---|---|---|
1 | DE SCHUYTENEER Steffen | 74 |
4 | HEYMANS Yarno | 63 |
9 | JURRIAANS Daan | 70 |
11 | VAN BEURDEN Niels | 58 |
14 | VERHAGEN Xander | 67 |
17 | BRETHOUWER Yorick | 69 |
18 | DOCKX Gilles | 61 |
30 | SAUL Evar | 65 |
32 | KONGSTAD Alfred | 75 |
34 | VAN DEN BRANDEN Rune | 78 |
41 | VANHAECKE Arno | 65 |
47 | VANDENABEELE Kobe | 64 |
50 | VAN ZUIDAM Bas | 63 |
107 | DE NEVE Hannes | 58 |
113 | TOFTEMARK Lucas | 73 |
133 | BARTELET David | 62 |