Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 20
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
De Schuyteneer
1
74 kgHeymans
1
63 kgJurriaans
2
70 kgBartelet
3
62 kgBrethouwer
3
69 kgvan Beurden
3
58 kgVerhagen
4
67 kgDockx
5
61 kgVandenabeele
5
64 kgSaul
6
65 kgToftemark
8
73 kgKongstad
8
75 kgVan den Branden
9
78 kgVanhaecke
10
65 kgvan Zuidam
12
63 kgDe Neve
24
58 kg
1
74 kgHeymans
1
63 kgJurriaans
2
70 kgBartelet
3
62 kgBrethouwer
3
69 kgvan Beurden
3
58 kgVerhagen
4
67 kgDockx
5
61 kgVandenabeele
5
64 kgSaul
6
65 kgToftemark
8
73 kgKongstad
8
75 kgVan den Branden
9
78 kgVanhaecke
10
65 kgvan Zuidam
12
63 kgDe Neve
24
58 kg
Weight (KG) →
Result →
78
58
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | DE SCHUYTENEER Steffen | 74 |
1 | HEYMANS Yarno | 63 |
2 | JURRIAANS Daan | 70 |
3 | BARTELET David | 62 |
3 | BRETHOUWER Yorick | 69 |
3 | VAN BEURDEN Niels | 58 |
4 | VERHAGEN Xander | 67 |
5 | DOCKX Gilles | 61 |
5 | VANDENABEELE Kobe | 64 |
6 | SAUL Evar | 65 |
8 | TOFTEMARK Lucas | 73 |
8 | KONGSTAD Alfred | 75 |
9 | VAN DEN BRANDEN Rune | 78 |
10 | VANHAECKE Arno | 65 |
12 | VAN ZUIDAM Bas | 63 |
24 | DE NEVE Hannes | 58 |