Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.1 * weight + 108
This means that on average for every extra kilogram weight a rider loses -1.1 positions in the result.
De Schuyteneer
1
74 kgHeymans
3
63 kgJurriaans
9
70 kgvan Beurden
14
58 kgVerhagen
16
67 kgBrethouwer
17
69 kgDockx
20
61 kgKongstad
28
75 kgSaul
29
65 kgVan den Branden
35
78 kgVanhaecke
36
65 kgVandenabeele
43
64 kgvan Zuidam
48
63 kgDe Neve
91
58 kgToftemark
102
73 kgBartelet
122
62 kg
1
74 kgHeymans
3
63 kgJurriaans
9
70 kgvan Beurden
14
58 kgVerhagen
16
67 kgBrethouwer
17
69 kgDockx
20
61 kgKongstad
28
75 kgSaul
29
65 kgVan den Branden
35
78 kgVanhaecke
36
65 kgVandenabeele
43
64 kgvan Zuidam
48
63 kgDe Neve
91
58 kgToftemark
102
73 kgBartelet
122
62 kg
Weight (KG) →
Result →
78
58
1
122
# | Rider | Weight (KG) |
---|---|---|
1 | DE SCHUYTENEER Steffen | 74 |
3 | HEYMANS Yarno | 63 |
9 | JURRIAANS Daan | 70 |
14 | VAN BEURDEN Niels | 58 |
16 | VERHAGEN Xander | 67 |
17 | BRETHOUWER Yorick | 69 |
20 | DOCKX Gilles | 61 |
28 | KONGSTAD Alfred | 75 |
29 | SAUL Evar | 65 |
35 | VAN DEN BRANDEN Rune | 78 |
36 | VANHAECKE Arno | 65 |
43 | VANDENABEELE Kobe | 64 |
48 | VAN ZUIDAM Bas | 63 |
91 | DE NEVE Hannes | 58 |
102 | TOFTEMARK Lucas | 73 |
122 | BARTELET David | 62 |