Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 107
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
De Schuyteneer
2
74 kgVandenabeele
8
64 kgDockx
10
61 kgVanhaecke
11
65 kgDe Neve
44
58 kgVerhagen
60
67 kgVan den Branden
62
78 kgToftemark
63
73 kgKongstad
66
75 kgSaul
68
65 kgHeymans
75
63 kgBrethouwer
80
69 kgvan Zuidam
88
63 kgJurriaans
102
70 kgvan Beurden
112
58 kgBartelet
116
62 kg
2
74 kgVandenabeele
8
64 kgDockx
10
61 kgVanhaecke
11
65 kgDe Neve
44
58 kgVerhagen
60
67 kgVan den Branden
62
78 kgToftemark
63
73 kgKongstad
66
75 kgSaul
68
65 kgHeymans
75
63 kgBrethouwer
80
69 kgvan Zuidam
88
63 kgJurriaans
102
70 kgvan Beurden
112
58 kgBartelet
116
62 kg
Weight (KG) →
Result →
78
58
2
116
# | Rider | Weight (KG) |
---|---|---|
2 | DE SCHUYTENEER Steffen | 74 |
8 | VANDENABEELE Kobe | 64 |
10 | DOCKX Gilles | 61 |
11 | VANHAECKE Arno | 65 |
44 | DE NEVE Hannes | 58 |
60 | VERHAGEN Xander | 67 |
62 | VAN DEN BRANDEN Rune | 78 |
63 | TOFTEMARK Lucas | 73 |
66 | KONGSTAD Alfred | 75 |
68 | SAUL Evar | 65 |
75 | HEYMANS Yarno | 63 |
80 | BRETHOUWER Yorick | 69 |
88 | VAN ZUIDAM Bas | 63 |
102 | JURRIAANS Daan | 70 |
112 | VAN BEURDEN Niels | 58 |
116 | BARTELET David | 62 |