Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.4 * weight - 30
This means that on average for every extra kilogram weight a rider loses 1.4 positions in the result.
Dockx
16
61 kgVan den Branden
18
78 kgBrethouwer
27
69 kgHeymans
30
63 kgvan Zuidam
35
63 kgDe Neve
41
58 kgJurriaans
48
70 kgVerhagen
49
67 kgVandenabeele
51
64 kgvan Beurden
53
58 kgKongstad
84
75 kgBartelet
88
62 kgSaul
103
65 kgDe Schuyteneer
107
74 kgVanhaecke
109
65 kgToftemark
121
73 kg
16
61 kgVan den Branden
18
78 kgBrethouwer
27
69 kgHeymans
30
63 kgvan Zuidam
35
63 kgDe Neve
41
58 kgJurriaans
48
70 kgVerhagen
49
67 kgVandenabeele
51
64 kgvan Beurden
53
58 kgKongstad
84
75 kgBartelet
88
62 kgSaul
103
65 kgDe Schuyteneer
107
74 kgVanhaecke
109
65 kgToftemark
121
73 kg
Weight (KG) →
Result →
78
58
16
121
# | Rider | Weight (KG) |
---|---|---|
16 | DOCKX Gilles | 61 |
18 | VAN DEN BRANDEN Rune | 78 |
27 | BRETHOUWER Yorick | 69 |
30 | HEYMANS Yarno | 63 |
35 | VAN ZUIDAM Bas | 63 |
41 | DE NEVE Hannes | 58 |
48 | JURRIAANS Daan | 70 |
49 | VERHAGEN Xander | 67 |
51 | VANDENABEELE Kobe | 64 |
53 | VAN BEURDEN Niels | 58 |
84 | KONGSTAD Alfred | 75 |
88 | BARTELET David | 62 |
103 | SAUL Evar | 65 |
107 | DE SCHUYTENEER Steffen | 74 |
109 | VANHAECKE Arno | 65 |
121 | TOFTEMARK Lucas | 73 |