Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -3.6 * weight + 284
This means that on average for every extra kilogram weight a rider loses -3.6 positions in the result.
Toftemark
4
73 kgVan den Branden
9
78 kgKongstad
12
75 kgDockx
18
61 kgVerhagen
20
67 kgVanhaecke
24
65 kgHeymans
30
63 kgBrethouwer
35
69 kgJurriaans
45
70 kgvan Zuidam
58
63 kgVandenabeele
63
64 kgvan Beurden
69
58 kgSaul
73
65 kgHornman
87
68 kgBartelet
102
62 kgDe Neve
103
58 kg
4
73 kgVan den Branden
9
78 kgKongstad
12
75 kgDockx
18
61 kgVerhagen
20
67 kgVanhaecke
24
65 kgHeymans
30
63 kgBrethouwer
35
69 kgJurriaans
45
70 kgvan Zuidam
58
63 kgVandenabeele
63
64 kgvan Beurden
69
58 kgSaul
73
65 kgHornman
87
68 kgBartelet
102
62 kgDe Neve
103
58 kg
Weight (KG) →
Result →
78
58
4
103
| # | Rider | Weight (KG) |
|---|---|---|
| 4 | TOFTEMARK Lucas | 73 |
| 9 | VAN DEN BRANDEN Rune | 78 |
| 12 | KONGSTAD Alfred | 75 |
| 18 | DOCKX Gilles | 61 |
| 20 | VERHAGEN Xander | 67 |
| 24 | VANHAECKE Arno | 65 |
| 30 | HEYMANS Yarno | 63 |
| 35 | BRETHOUWER Yorick | 69 |
| 45 | JURRIAANS Daan | 70 |
| 58 | VAN ZUIDAM Bas | 63 |
| 63 | VANDENABEELE Kobe | 64 |
| 69 | VAN BEURDEN Niels | 58 |
| 73 | SAUL Evar | 65 |
| 87 | HORNMAN Thomas | 68 |
| 102 | BARTELET David | 62 |
| 103 | DE NEVE Hannes | 58 |