Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 87
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
De Schuyteneer
1
74 kgChamberlain
3
74 kgStoneham
6
67 kgHolmes
9
64 kgLarsson
18
60 kgJessen
26
58 kgKongstad
29
75 kgWeber
33
77 kgHeath
49
63 kgArjus
56
70 kgde Jonghe
59
61 kgGalle
60
63 kgBauwens
68
71 kgCnudde
85
75 kgGrömmel
90
70 kgVandenabeele
93
64 kgvan Zuidam
103
63 kg
1
74 kgChamberlain
3
74 kgStoneham
6
67 kgHolmes
9
64 kgLarsson
18
60 kgJessen
26
58 kgKongstad
29
75 kgWeber
33
77 kgHeath
49
63 kgArjus
56
70 kgde Jonghe
59
61 kgGalle
60
63 kgBauwens
68
71 kgCnudde
85
75 kgGrömmel
90
70 kgVandenabeele
93
64 kgvan Zuidam
103
63 kg
Weight (KG) →
Result →
77
58
1
103
# | Rider | Weight (KG) |
---|---|---|
1 | DE SCHUYTENEER Steffen | 74 |
3 | CHAMBERLAIN Oscar | 74 |
6 | STONEHAM Angus | 67 |
9 | HOLMES Wil | 64 |
18 | LARSSON Linus | 60 |
26 | JESSEN Cohen | 58 |
29 | KONGSTAD Alfred | 75 |
33 | WEBER Gino | 77 |
49 | HEATH Will | 63 |
56 | ARJUS Henri | 70 |
59 | DE JONGHE Mirko | 61 |
60 | GALLE Mika | 63 |
68 | BAUWENS Siebe | 71 |
85 | CNUDDE Louis | 75 |
90 | GRÖMMEL Rens | 70 |
93 | VANDENABEELE Kobe | 64 |
103 | VAN ZUIDAM Bas | 63 |