Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 5
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
De Schuyteneer
1
74 kgChamberlain
2
74 kgHolmes
2
64 kgJessen
2
58 kgHeath
2
63 kgGrömmel
3
70 kgStoneham
5
67 kgde Jonghe
6
61 kgVandenabeele
6
64 kgCnudde
6
75 kgKongstad
7
75 kgLarsson
7
60 kgArjus
9
70 kgvan Zuidam
11
63 kgWeber
11
77 kgBauwens
20
71 kgGalle
21
63 kg
1
74 kgChamberlain
2
74 kgHolmes
2
64 kgJessen
2
58 kgHeath
2
63 kgGrömmel
3
70 kgStoneham
5
67 kgde Jonghe
6
61 kgVandenabeele
6
64 kgCnudde
6
75 kgKongstad
7
75 kgLarsson
7
60 kgArjus
9
70 kgvan Zuidam
11
63 kgWeber
11
77 kgBauwens
20
71 kgGalle
21
63 kg
Weight (KG) →
Result →
77
58
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | DE SCHUYTENEER Steffen | 74 |
2 | CHAMBERLAIN Oscar | 74 |
2 | HOLMES Wil | 64 |
2 | JESSEN Cohen | 58 |
2 | HEATH Will | 63 |
3 | GRÖMMEL Rens | 70 |
5 | STONEHAM Angus | 67 |
6 | DE JONGHE Mirko | 61 |
6 | VANDENABEELE Kobe | 64 |
6 | CNUDDE Louis | 75 |
7 | KONGSTAD Alfred | 75 |
7 | LARSSON Linus | 60 |
9 | ARJUS Henri | 70 |
11 | VAN ZUIDAM Bas | 63 |
11 | WEBER Gino | 77 |
20 | BAUWENS Siebe | 71 |
21 | GALLE Mika | 63 |