Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.8 * weight + 173
This means that on average for every extra kilogram weight a rider loses -1.8 positions in the result.
De Schuyteneer
1
74 kgChamberlain
5
74 kgJessen
6
58 kgHolmes
7
64 kgSentjens
8
85 kgStoneham
14
67 kgCnudde
17
75 kgVandevorst
24
74 kgWeber
35
77 kgKongstad
39
75 kgde Jonghe
44
61 kgHeath
47
63 kgLarsson
77
60 kgBauwens
79
71 kgGalle
83
63 kgvan Zuidam
88
63 kgArjus
104
70 kgVandenabeele
113
64 kgGrömmel
115
70 kg
1
74 kgChamberlain
5
74 kgJessen
6
58 kgHolmes
7
64 kgSentjens
8
85 kgStoneham
14
67 kgCnudde
17
75 kgVandevorst
24
74 kgWeber
35
77 kgKongstad
39
75 kgde Jonghe
44
61 kgHeath
47
63 kgLarsson
77
60 kgBauwens
79
71 kgGalle
83
63 kgvan Zuidam
88
63 kgArjus
104
70 kgVandenabeele
113
64 kgGrömmel
115
70 kg
Weight (KG) →
Result →
85
58
1
115
# | Rider | Weight (KG) |
---|---|---|
1 | DE SCHUYTENEER Steffen | 74 |
5 | CHAMBERLAIN Oscar | 74 |
6 | JESSEN Cohen | 58 |
7 | HOLMES Wil | 64 |
8 | SENTJENS Sente | 85 |
14 | STONEHAM Angus | 67 |
17 | CNUDDE Louis | 75 |
24 | VANDEVORST Nio | 74 |
35 | WEBER Gino | 77 |
39 | KONGSTAD Alfred | 75 |
44 | DE JONGHE Mirko | 61 |
47 | HEATH Will | 63 |
77 | LARSSON Linus | 60 |
79 | BAUWENS Siebe | 71 |
83 | GALLE Mika | 63 |
88 | VAN ZUIDAM Bas | 63 |
104 | ARJUS Henri | 70 |
113 | VANDENABEELE Kobe | 64 |
115 | GRÖMMEL Rens | 70 |