Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 65
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Larsson
3
60 kgStoneham
9
67 kgChamberlain
12
74 kgDe Schuyteneer
13
74 kgBauwens
16
71 kgGrömmel
17
70 kgWeber
23
77 kgHolmes
26
64 kgGalle
27
63 kgVandenabeele
47
64 kgde Jonghe
60
61 kgJessen
64
58 kgHeath
91
63 kgKongstad
102
75 kgCnudde
104
75 kgArjus
110
70 kgvan Zuidam
122
63 kg
3
60 kgStoneham
9
67 kgChamberlain
12
74 kgDe Schuyteneer
13
74 kgBauwens
16
71 kgGrömmel
17
70 kgWeber
23
77 kgHolmes
26
64 kgGalle
27
63 kgVandenabeele
47
64 kgde Jonghe
60
61 kgJessen
64
58 kgHeath
91
63 kgKongstad
102
75 kgCnudde
104
75 kgArjus
110
70 kgvan Zuidam
122
63 kg
Weight (KG) →
Result →
77
58
3
122
# | Rider | Weight (KG) |
---|---|---|
3 | LARSSON Linus | 60 |
9 | STONEHAM Angus | 67 |
12 | CHAMBERLAIN Oscar | 74 |
13 | DE SCHUYTENEER Steffen | 74 |
16 | BAUWENS Siebe | 71 |
17 | GRÖMMEL Rens | 70 |
23 | WEBER Gino | 77 |
26 | HOLMES Wil | 64 |
27 | GALLE Mika | 63 |
47 | VANDENABEELE Kobe | 64 |
60 | DE JONGHE Mirko | 61 |
64 | JESSEN Cohen | 58 |
91 | HEATH Will | 63 |
102 | KONGSTAD Alfred | 75 |
104 | CNUDDE Louis | 75 |
110 | ARJUS Henri | 70 |
122 | VAN ZUIDAM Bas | 63 |