Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 137
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Larsson
4
60 kgDe Schuyteneer
6
74 kgGrömmel
7
70 kgChamberlain
8
74 kgBauwens
13
71 kgVandenabeele
23
64 kgWeber
41
77 kgStoneham
68
67 kgHolmes
69
64 kgde Jonghe
72
61 kgHeath
81
63 kgJessen
89
58 kgGalle
90
63 kgKongstad
97
75 kgArjus
103
70 kgvan Zuidam
110
63 kgCnudde
112
75 kg
4
60 kgDe Schuyteneer
6
74 kgGrömmel
7
70 kgChamberlain
8
74 kgBauwens
13
71 kgVandenabeele
23
64 kgWeber
41
77 kgStoneham
68
67 kgHolmes
69
64 kgde Jonghe
72
61 kgHeath
81
63 kgJessen
89
58 kgGalle
90
63 kgKongstad
97
75 kgArjus
103
70 kgvan Zuidam
110
63 kgCnudde
112
75 kg
Weight (KG) →
Result →
77
58
4
112
# | Rider | Weight (KG) |
---|---|---|
4 | LARSSON Linus | 60 |
6 | DE SCHUYTENEER Steffen | 74 |
7 | GRÖMMEL Rens | 70 |
8 | CHAMBERLAIN Oscar | 74 |
13 | BAUWENS Siebe | 71 |
23 | VANDENABEELE Kobe | 64 |
41 | WEBER Gino | 77 |
68 | STONEHAM Angus | 67 |
69 | HOLMES Wil | 64 |
72 | DE JONGHE Mirko | 61 |
81 | HEATH Will | 63 |
89 | JESSEN Cohen | 58 |
90 | GALLE Mika | 63 |
97 | KONGSTAD Alfred | 75 |
103 | ARJUS Henri | 70 |
110 | VAN ZUIDAM Bas | 63 |
112 | CNUDDE Louis | 75 |