Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.1 * weight - 98
This means that on average for every extra kilogram weight a rider loses 2.1 positions in the result.
Grindley
2
72 kgScheldeman
5
66 kgLarsson
6
60 kgVandevorst
7
74 kgKrzyśków
8
63 kgGoold
15
59 kgVugts
33
67 kgCnudde
42
75 kgSymm
43
65 kgKleibrant
51
61 kgBauwens
60
71 kgHanegraaf
73
70 kgRichert
76
69 kgHermans
78
70 kgHedeås
91
74 kgWrona
100
67 kgLangbeen
101
68 kg
2
72 kgScheldeman
5
66 kgLarsson
6
60 kgVandevorst
7
74 kgKrzyśków
8
63 kgGoold
15
59 kgVugts
33
67 kgCnudde
42
75 kgSymm
43
65 kgKleibrant
51
61 kgBauwens
60
71 kgHanegraaf
73
70 kgRichert
76
69 kgHermans
78
70 kgHedeås
91
74 kgWrona
100
67 kgLangbeen
101
68 kg
Weight (KG) →
Result →
75
59
2
101
# | Rider | Weight (KG) |
---|---|---|
2 | GRINDLEY Sebastian | 72 |
5 | SCHELDEMAN Xander | 66 |
6 | LARSSON Linus | 60 |
7 | VANDEVORST Nio | 74 |
8 | KRZYŚKÓW Dominik | 63 |
15 | GOOLD Max | 59 |
33 | VUGTS Bram | 67 |
42 | CNUDDE Louis | 75 |
43 | SYMM Matthew | 65 |
51 | KLEIBRANT Wilmer | 61 |
60 | BAUWENS Siebe | 71 |
73 | HANEGRAAF Niels | 70 |
76 | RICHERT Luke | 69 |
78 | HERMANS Stef | 70 |
91 | HEDEÅS Victor | 74 |
100 | WRONA Szymon | 67 |
101 | LANGBEEN Ludovic | 68 |