Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight + 17
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Vandevorst
5
74 kgGrindley
9
72 kgGoold
12
59 kgLarsson
15
60 kgKrzyśków
17
63 kgScheldeman
26
66 kgWeber
31
77 kgSymm
37
65 kgVugts
39
67 kgHanegraaf
41
70 kgWrona
46
67 kgCnudde
57
75 kgBauwens
67
71 kgKleibrant
87
61 kgHermans
99
70 kgDahler
100
60 kgFitzgerald
108
73 kgRichert
116
69 kgHedeås
123
74 kgStryjewski
135
69 kgLangbeen
141
68 kgLarsen
146
65 kg
5
74 kgGrindley
9
72 kgGoold
12
59 kgLarsson
15
60 kgKrzyśków
17
63 kgScheldeman
26
66 kgWeber
31
77 kgSymm
37
65 kgVugts
39
67 kgHanegraaf
41
70 kgWrona
46
67 kgCnudde
57
75 kgBauwens
67
71 kgKleibrant
87
61 kgHermans
99
70 kgDahler
100
60 kgFitzgerald
108
73 kgRichert
116
69 kgHedeås
123
74 kgStryjewski
135
69 kgLangbeen
141
68 kgLarsen
146
65 kg
Weight (KG) →
Result →
77
59
5
146
# | Rider | Weight (KG) |
---|---|---|
5 | VANDEVORST Nio | 74 |
9 | GRINDLEY Sebastian | 72 |
12 | GOOLD Max | 59 |
15 | LARSSON Linus | 60 |
17 | KRZYŚKÓW Dominik | 63 |
26 | SCHELDEMAN Xander | 66 |
31 | WEBER Gino | 77 |
37 | SYMM Matthew | 65 |
39 | VUGTS Bram | 67 |
41 | HANEGRAAF Niels | 70 |
46 | WRONA Szymon | 67 |
57 | CNUDDE Louis | 75 |
67 | BAUWENS Siebe | 71 |
87 | KLEIBRANT Wilmer | 61 |
99 | HERMANS Stef | 70 |
100 | DAHLER Thijs | 60 |
108 | FITZGERALD Max | 73 |
116 | RICHERT Luke | 69 |
123 | HEDEÅS Victor | 74 |
135 | STRYJEWSKI Piotr | 69 |
141 | LANGBEEN Ludovic | 68 |
146 | LARSEN Alexander Nørskov | 65 |