Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 6
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Grindley
3
72 kgGoold
4
59 kgLarsson
4
60 kgFitzgerald
5
73 kgKrzyśków
5
63 kgScheldeman
7
66 kgWeber
8
77 kgSymm
9
65 kgHanegraaf
10
70 kgVugts
10
67 kgDahler
10
60 kgStryjewski
11
69 kgWrona
11
67 kgHermans
15
70 kgCnudde
15
75 kgBauwens
17
71 kgRichert
20
69 kgKleibrant
21
61 kgHedeås
21
74 kgLangbeen
22
68 kg
3
72 kgGoold
4
59 kgLarsson
4
60 kgFitzgerald
5
73 kgKrzyśków
5
63 kgScheldeman
7
66 kgWeber
8
77 kgSymm
9
65 kgHanegraaf
10
70 kgVugts
10
67 kgDahler
10
60 kgStryjewski
11
69 kgWrona
11
67 kgHermans
15
70 kgCnudde
15
75 kgBauwens
17
71 kgRichert
20
69 kgKleibrant
21
61 kgHedeås
21
74 kgLangbeen
22
68 kg
Weight (KG) →
Result →
77
59
3
22
# | Rider | Weight (KG) |
---|---|---|
3 | GRINDLEY Sebastian | 72 |
4 | GOOLD Max | 59 |
4 | LARSSON Linus | 60 |
5 | FITZGERALD Max | 73 |
5 | KRZYŚKÓW Dominik | 63 |
7 | SCHELDEMAN Xander | 66 |
8 | WEBER Gino | 77 |
9 | SYMM Matthew | 65 |
10 | HANEGRAAF Niels | 70 |
10 | VUGTS Bram | 67 |
10 | DAHLER Thijs | 60 |
11 | STRYJEWSKI Piotr | 69 |
11 | WRONA Szymon | 67 |
15 | HERMANS Stef | 70 |
15 | CNUDDE Louis | 75 |
17 | BAUWENS Siebe | 71 |
20 | RICHERT Luke | 69 |
21 | KLEIBRANT Wilmer | 61 |
21 | HEDEÅS Victor | 74 |
22 | LANGBEEN Ludovic | 68 |