Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 65
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Grindley
2
72 kgVandevorst
6
74 kgKrzyśków
13
63 kgLarsson
15
60 kgGoold
16
59 kgScheldeman
26
66 kgWeber
32
77 kgHanegraaf
36
70 kgSymm
38
65 kgVugts
40
67 kgWrona
45
67 kgCnudde
52
75 kgBauwens
59
71 kgEkman
77
64 kgKleibrant
78
61 kgHermans
88
70 kgDahler
93
60 kgRichert
103
69 kgHedeås
107
74 kgLangbeen
122
68 kgLarsen
125
65 kg
2
72 kgVandevorst
6
74 kgKrzyśków
13
63 kgLarsson
15
60 kgGoold
16
59 kgScheldeman
26
66 kgWeber
32
77 kgHanegraaf
36
70 kgSymm
38
65 kgVugts
40
67 kgWrona
45
67 kgCnudde
52
75 kgBauwens
59
71 kgEkman
77
64 kgKleibrant
78
61 kgHermans
88
70 kgDahler
93
60 kgRichert
103
69 kgHedeås
107
74 kgLangbeen
122
68 kgLarsen
125
65 kg
Weight (KG) →
Result →
77
59
2
125
# | Rider | Weight (KG) |
---|---|---|
2 | GRINDLEY Sebastian | 72 |
6 | VANDEVORST Nio | 74 |
13 | KRZYŚKÓW Dominik | 63 |
15 | LARSSON Linus | 60 |
16 | GOOLD Max | 59 |
26 | SCHELDEMAN Xander | 66 |
32 | WEBER Gino | 77 |
36 | HANEGRAAF Niels | 70 |
38 | SYMM Matthew | 65 |
40 | VUGTS Bram | 67 |
45 | WRONA Szymon | 67 |
52 | CNUDDE Louis | 75 |
59 | BAUWENS Siebe | 71 |
77 | EKMAN Vilmer | 64 |
78 | KLEIBRANT Wilmer | 61 |
88 | HERMANS Stef | 70 |
93 | DAHLER Thijs | 60 |
103 | RICHERT Luke | 69 |
107 | HEDEÅS Victor | 74 |
122 | LANGBEEN Ludovic | 68 |
125 | LARSEN Alexander Nørskov | 65 |