Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.5 * weight + 154
This means that on average for every extra kilogram weight a rider loses -1.5 positions in the result.
Grindley
1
72 kgHanegraaf
3
70 kgKrzyśków
4
63 kgVandevorst
9
74 kgBauwens
13
71 kgLarsson
14
60 kgScheldeman
29
66 kgLangbeen
34
68 kgCnudde
37
75 kgWrona
40
67 kgVugts
43
67 kgKleibrant
56
61 kgWeber
64
77 kgRichert
66
69 kgSymm
80
65 kgGoold
90
59 kgHermans
92
70 kgHedeås
96
74 kgLarsen
98
65 kgDahler
117
60 kg
1
72 kgHanegraaf
3
70 kgKrzyśków
4
63 kgVandevorst
9
74 kgBauwens
13
71 kgLarsson
14
60 kgScheldeman
29
66 kgLangbeen
34
68 kgCnudde
37
75 kgWrona
40
67 kgVugts
43
67 kgKleibrant
56
61 kgWeber
64
77 kgRichert
66
69 kgSymm
80
65 kgGoold
90
59 kgHermans
92
70 kgHedeås
96
74 kgLarsen
98
65 kgDahler
117
60 kg
Weight (KG) →
Result →
77
59
1
117
# | Rider | Weight (KG) |
---|---|---|
1 | GRINDLEY Sebastian | 72 |
3 | HANEGRAAF Niels | 70 |
4 | KRZYŚKÓW Dominik | 63 |
9 | VANDEVORST Nio | 74 |
13 | BAUWENS Siebe | 71 |
14 | LARSSON Linus | 60 |
29 | SCHELDEMAN Xander | 66 |
34 | LANGBEEN Ludovic | 68 |
37 | CNUDDE Louis | 75 |
40 | WRONA Szymon | 67 |
43 | VUGTS Bram | 67 |
56 | KLEIBRANT Wilmer | 61 |
64 | WEBER Gino | 77 |
66 | RICHERT Luke | 69 |
80 | SYMM Matthew | 65 |
90 | GOOLD Max | 59 |
92 | HERMANS Stef | 70 |
96 | HEDEÅS Victor | 74 |
98 | LARSEN Alexander Nørskov | 65 |
117 | DAHLER Thijs | 60 |