Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.7 * weight - 55
This means that on average for every extra kilogram weight a rider loses 1.7 positions in the result.
Grindley
2
72 kgVandevorst
4
74 kgKrzyśków
5
63 kgScheldeman
12
66 kgGoold
13
59 kgLarsson
14
60 kgVugts
34
67 kgCnudde
47
75 kgSymm
48
65 kgWrona
53
67 kgKleibrant
59
61 kgBauwens
69
71 kgDahler
90
60 kgHanegraaf
91
70 kgWeber
92
77 kgHermans
94
70 kgRichert
98
69 kgHedeås
108
74 kgLangbeen
119
68 kgLarsen
124
65 kg
2
72 kgVandevorst
4
74 kgKrzyśków
5
63 kgScheldeman
12
66 kgGoold
13
59 kgLarsson
14
60 kgVugts
34
67 kgCnudde
47
75 kgSymm
48
65 kgWrona
53
67 kgKleibrant
59
61 kgBauwens
69
71 kgDahler
90
60 kgHanegraaf
91
70 kgWeber
92
77 kgHermans
94
70 kgRichert
98
69 kgHedeås
108
74 kgLangbeen
119
68 kgLarsen
124
65 kg
Weight (KG) →
Result →
77
59
2
124
# | Rider | Weight (KG) |
---|---|---|
2 | GRINDLEY Sebastian | 72 |
4 | VANDEVORST Nio | 74 |
5 | KRZYŚKÓW Dominik | 63 |
12 | SCHELDEMAN Xander | 66 |
13 | GOOLD Max | 59 |
14 | LARSSON Linus | 60 |
34 | VUGTS Bram | 67 |
47 | CNUDDE Louis | 75 |
48 | SYMM Matthew | 65 |
53 | WRONA Szymon | 67 |
59 | KLEIBRANT Wilmer | 61 |
69 | BAUWENS Siebe | 71 |
90 | DAHLER Thijs | 60 |
91 | HANEGRAAF Niels | 70 |
92 | WEBER Gino | 77 |
94 | HERMANS Stef | 70 |
98 | RICHERT Luke | 69 |
108 | HEDEÅS Victor | 74 |
119 | LANGBEEN Ludovic | 68 |
124 | LARSEN Alexander Nørskov | 65 |