Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 3.9 * weight - 195
This means that on average for every extra kilogram weight a rider loses 3.9 positions in the result.
Grindley
2
72 kgScheldeman
3
66 kgKrzyśków
6
63 kgGoold
16
59 kgLarsson
19
60 kgVugts
42
67 kgKleibrant
43
61 kgCnudde
52
75 kgRichert
60
69 kgDahler
83
60 kgWrona
88
67 kgLangbeen
94
68 kgSymm
96
65 kgBauwens
100
71 kgHedeås
106
74 kgHermans
107
70 kgHanegraaf
125
70 kgWeber
126
77 kg
2
72 kgScheldeman
3
66 kgKrzyśków
6
63 kgGoold
16
59 kgLarsson
19
60 kgVugts
42
67 kgKleibrant
43
61 kgCnudde
52
75 kgRichert
60
69 kgDahler
83
60 kgWrona
88
67 kgLangbeen
94
68 kgSymm
96
65 kgBauwens
100
71 kgHedeås
106
74 kgHermans
107
70 kgHanegraaf
125
70 kgWeber
126
77 kg
Weight (KG) →
Result →
77
59
2
126
# | Rider | Weight (KG) |
---|---|---|
2 | GRINDLEY Sebastian | 72 |
3 | SCHELDEMAN Xander | 66 |
6 | KRZYŚKÓW Dominik | 63 |
16 | GOOLD Max | 59 |
19 | LARSSON Linus | 60 |
42 | VUGTS Bram | 67 |
43 | KLEIBRANT Wilmer | 61 |
52 | CNUDDE Louis | 75 |
60 | RICHERT Luke | 69 |
83 | DAHLER Thijs | 60 |
88 | WRONA Szymon | 67 |
94 | LANGBEEN Ludovic | 68 |
96 | SYMM Matthew | 65 |
100 | BAUWENS Siebe | 71 |
106 | HEDEÅS Victor | 74 |
107 | HERMANS Stef | 70 |
125 | HANEGRAAF Niels | 70 |
126 | WEBER Gino | 77 |