Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.1 * weight - 17
This means that on average for every extra kilogram weight a rider loses 1.1 positions in the result.
Grindley
2
72 kgLarsson
5
60 kgScheldeman
6
66 kgVandevorst
7
74 kgKrzyśków
8
63 kgGoold
16
59 kgVugts
34
67 kgCnudde
45
75 kgSymm
46
65 kgKleibrant
53
61 kgBauwens
65
71 kgHanegraaf
79
70 kgHermans
82
70 kgRichert
86
69 kgDahler
92
60 kgHedeås
99
74 kgWrona
108
67 kgLangbeen
109
68 kgLarsen
114
65 kg
2
72 kgLarsson
5
60 kgScheldeman
6
66 kgVandevorst
7
74 kgKrzyśków
8
63 kgGoold
16
59 kgVugts
34
67 kgCnudde
45
75 kgSymm
46
65 kgKleibrant
53
61 kgBauwens
65
71 kgHanegraaf
79
70 kgHermans
82
70 kgRichert
86
69 kgDahler
92
60 kgHedeås
99
74 kgWrona
108
67 kgLangbeen
109
68 kgLarsen
114
65 kg
Weight (KG) →
Result →
75
59
2
114
# | Rider | Weight (KG) |
---|---|---|
2 | GRINDLEY Sebastian | 72 |
5 | LARSSON Linus | 60 |
6 | SCHELDEMAN Xander | 66 |
7 | VANDEVORST Nio | 74 |
8 | KRZYŚKÓW Dominik | 63 |
16 | GOOLD Max | 59 |
34 | VUGTS Bram | 67 |
45 | CNUDDE Louis | 75 |
46 | SYMM Matthew | 65 |
53 | KLEIBRANT Wilmer | 61 |
65 | BAUWENS Siebe | 71 |
79 | HANEGRAAF Niels | 70 |
82 | HERMANS Stef | 70 |
86 | RICHERT Luke | 69 |
92 | DAHLER Thijs | 60 |
99 | HEDEÅS Victor | 74 |
108 | WRONA Szymon | 67 |
109 | LANGBEEN Ludovic | 68 |
114 | LARSEN Alexander Nørskov | 65 |