Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 87
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Larsson
1
60 kgScheldeman
4
66 kgGrindley
11
72 kgBauwens
22
71 kgRichert
30
69 kgVugts
31
67 kgHedeås
34
74 kgLangbeen
39
68 kgKleibrant
56
61 kgLarsen
64
65 kgGoold
71
59 kgSymm
74
65 kgHermans
75
70 kgCnudde
76
75 kgKrzyśków
78
63 kgVandevorst
85
74 kgHanegraaf
94
70 kgDahler
104
60 kgWrona
116
67 kg
1
60 kgScheldeman
4
66 kgGrindley
11
72 kgBauwens
22
71 kgRichert
30
69 kgVugts
31
67 kgHedeås
34
74 kgLangbeen
39
68 kgKleibrant
56
61 kgLarsen
64
65 kgGoold
71
59 kgSymm
74
65 kgHermans
75
70 kgCnudde
76
75 kgKrzyśków
78
63 kgVandevorst
85
74 kgHanegraaf
94
70 kgDahler
104
60 kgWrona
116
67 kg
Weight (KG) →
Result →
75
59
1
116
# | Rider | Weight (KG) |
---|---|---|
1 | LARSSON Linus | 60 |
4 | SCHELDEMAN Xander | 66 |
11 | GRINDLEY Sebastian | 72 |
22 | BAUWENS Siebe | 71 |
30 | RICHERT Luke | 69 |
31 | VUGTS Bram | 67 |
34 | HEDEÅS Victor | 74 |
39 | LANGBEEN Ludovic | 68 |
56 | KLEIBRANT Wilmer | 61 |
64 | LARSEN Alexander Nørskov | 65 |
71 | GOOLD Max | 59 |
74 | SYMM Matthew | 65 |
75 | HERMANS Stef | 70 |
76 | CNUDDE Louis | 75 |
78 | KRZYŚKÓW Dominik | 63 |
85 | VANDEVORST Nio | 74 |
94 | HANEGRAAF Niels | 70 |
104 | DAHLER Thijs | 60 |
116 | WRONA Szymon | 67 |