Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.5 * weight - 60
This means that on average for every extra kilogram weight a rider loses 1.5 positions in the result.
Vandevorst
1
74 kgLarsson
6
60 kgBauwens
7
71 kgGrindley
11
72 kgScheldeman
15
66 kgLangbeen
17
68 kgKrzyśków
24
63 kgSymm
27
65 kgWrona
32
67 kgVugts
33
67 kgKleibrant
44
61 kgGoold
53
59 kgCnudde
66
75 kgRichert
73
69 kgHanegraaf
79
70 kgHedeås
90
74 kgHermans
100
70 kg
1
74 kgLarsson
6
60 kgBauwens
7
71 kgGrindley
11
72 kgScheldeman
15
66 kgLangbeen
17
68 kgKrzyśków
24
63 kgSymm
27
65 kgWrona
32
67 kgVugts
33
67 kgKleibrant
44
61 kgGoold
53
59 kgCnudde
66
75 kgRichert
73
69 kgHanegraaf
79
70 kgHedeås
90
74 kgHermans
100
70 kg
Weight (KG) →
Result →
75
59
1
100
# | Rider | Weight (KG) |
---|---|---|
1 | VANDEVORST Nio | 74 |
6 | LARSSON Linus | 60 |
7 | BAUWENS Siebe | 71 |
11 | GRINDLEY Sebastian | 72 |
15 | SCHELDEMAN Xander | 66 |
17 | LANGBEEN Ludovic | 68 |
24 | KRZYŚKÓW Dominik | 63 |
27 | SYMM Matthew | 65 |
32 | WRONA Szymon | 67 |
33 | VUGTS Bram | 67 |
44 | KLEIBRANT Wilmer | 61 |
53 | GOOLD Max | 59 |
66 | CNUDDE Louis | 75 |
73 | RICHERT Luke | 69 |
79 | HANEGRAAF Niels | 70 |
90 | HEDEÅS Victor | 74 |
100 | HERMANS Stef | 70 |