Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 15
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Duckert
4
68 kgTheiler
6
75 kgKlein
7
66 kgTuka
8
57 kgCamrda
10
63 kgMackie
12
66 kgHansen
13
68 kgSchönenberger
14
60 kgStrelnikov
17
70 kgRogora
18
65 kgGätzi
19
61 kgDostiyev
20
57 kgLohinský
22
71 kgKvam
23
72 kgWang
26
70 kgRavnøy
29
78 kgOlsen
30
62 kgLydic
31
62 kgHoflund
32
68 kgPlambeck
35
68 kgShipley
37
70 kgMulagaleyev
39
65 kgBoyle
43
77 kg
4
68 kgTheiler
6
75 kgKlein
7
66 kgTuka
8
57 kgCamrda
10
63 kgMackie
12
66 kgHansen
13
68 kgSchönenberger
14
60 kgStrelnikov
17
70 kgRogora
18
65 kgGätzi
19
61 kgDostiyev
20
57 kgLohinský
22
71 kgKvam
23
72 kgWang
26
70 kgRavnøy
29
78 kgOlsen
30
62 kgLydic
31
62 kgHoflund
32
68 kgPlambeck
35
68 kgShipley
37
70 kgMulagaleyev
39
65 kgBoyle
43
77 kg
Weight (KG) →
Result →
78
57
4
43
# | Rider | Weight (KG) |
---|---|---|
4 | DUCKERT Roman | 68 |
6 | THEILER Ole | 75 |
7 | KLEIN Tobias | 66 |
8 | TUKA Samuel | 57 |
10 | CAMRDA Karel | 63 |
12 | MACKIE Ewan | 66 |
13 | HANSEN Alexander Arnt | 68 |
14 | SCHÖNENBERGER Daniel | 60 |
17 | STRELNIKOV Yegor | 70 |
18 | ROGORA Kiya | 65 |
19 | GÄTZI Cyrill | 61 |
20 | DOSTIYEV Ilkhan | 57 |
22 | LOHINSKÝ Filip | 71 |
23 | KVAM Kalle | 72 |
26 | WANG Gustav | 70 |
29 | RAVNØY Johan | 78 |
30 | OLSEN Rasmus Bisgaard | 62 |
31 | LYDIC Andrew | 62 |
32 | HOFLUND Albin | 68 |
35 | PLAMBECK Moritz | 68 |
37 | SHIPLEY Gabriel | 70 |
39 | MULAGALEYEV Vladimir | 65 |
43 | BOYLE Evan | 77 |