Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 47
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Wood
1
56 kgBeltman
3
68 kgBrzeźna
4
56 kgRagažinskienė
5
58 kgVisser
8
59 kgLichtenberg
9
52 kgvan Dijk
11
71 kgWild
14
75 kgDe Vocht
20
61 kgHenrion
28
60 kgJasinska
33
57 kgWyman
54
56 kgMelchers
60
59 kgStander
64
57 kgKoedooder
72
69 kgMeng
84
65 kgSandig
87
62 kgSchleicher
90
58 kgSlappendel
97
67 kgVilajosana
100
57 kgHatteland Lima
108
65 kgMin
121
56 kg
1
56 kgBeltman
3
68 kgBrzeźna
4
56 kgRagažinskienė
5
58 kgVisser
8
59 kgLichtenberg
9
52 kgvan Dijk
11
71 kgWild
14
75 kgDe Vocht
20
61 kgHenrion
28
60 kgJasinska
33
57 kgWyman
54
56 kgMelchers
60
59 kgStander
64
57 kgKoedooder
72
69 kgMeng
84
65 kgSandig
87
62 kgSchleicher
90
58 kgSlappendel
97
67 kgVilajosana
100
57 kgHatteland Lima
108
65 kgMin
121
56 kg
Weight (KG) →
Result →
75
52
1
121
# | Rider | Weight (KG) |
---|---|---|
1 | WOOD Oenone | 56 |
3 | BELTMAN Chantal | 68 |
4 | BRZEŹNA Paulina | 56 |
5 | RAGAŽINSKIENĖ Daiva | 58 |
8 | VISSER Adrie | 59 |
9 | LICHTENBERG Claudia | 52 |
11 | VAN DIJK Ellen | 71 |
14 | WILD Kirsten | 75 |
20 | DE VOCHT Liesbet | 61 |
28 | HENRION Ludivine | 60 |
33 | JASINSKA Małgorzata | 57 |
54 | WYMAN Helen | 56 |
60 | MELCHERS Mirjam | 59 |
64 | STANDER Marissa | 57 |
72 | KOEDOODER Vera | 69 |
84 | MENG Lang | 65 |
87 | SANDIG Madeleine | 62 |
90 | SCHLEICHER Regina | 58 |
97 | SLAPPENDEL Iris | 67 |
100 | VILAJOSANA Marta | 57 |
108 | HATTELAND LIMA Tone | 65 |
121 | MIN Gao | 56 |