Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 74
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Kupfernagel
1
68 kgSoeder
3
52 kgGilmore
5
56 kgBecker
6
64 kgvan Dijk
7
71 kgBrennauer
12
63 kgGunnewijk
14
67 kgWyman
18
56 kgKiesanowski
21
56 kgMartisova
25
64 kgJeuland-Tranchant
27
61 kgSpratt
28
55 kgMajerus
39
56 kgSandig
55
62 kgLichtenberg
58
52 kgSchleicher
59
58 kgTeutenberg
60
64 kgFahlin
61
63 kgSels
65
65 kgHenrion
66
60 kgCarrigan
68
60 kgKasper
76
59 kg
1
68 kgSoeder
3
52 kgGilmore
5
56 kgBecker
6
64 kgvan Dijk
7
71 kgBrennauer
12
63 kgGunnewijk
14
67 kgWyman
18
56 kgKiesanowski
21
56 kgMartisova
25
64 kgJeuland-Tranchant
27
61 kgSpratt
28
55 kgMajerus
39
56 kgSandig
55
62 kgLichtenberg
58
52 kgSchleicher
59
58 kgTeutenberg
60
64 kgFahlin
61
63 kgSels
65
65 kgHenrion
66
60 kgCarrigan
68
60 kgKasper
76
59 kg
Weight (KG) →
Result →
71
52
1
76
# | Rider | Weight (KG) |
---|---|---|
1 | KUPFERNAGEL Hanka | 68 |
3 | SOEDER Christiane | 52 |
5 | GILMORE Rochelle | 56 |
6 | BECKER Charlotte | 64 |
7 | VAN DIJK Ellen | 71 |
12 | BRENNAUER Lisa | 63 |
14 | GUNNEWIJK Loes | 67 |
18 | WYMAN Helen | 56 |
21 | KIESANOWSKI Joanne | 56 |
25 | MARTISOVA Julia | 64 |
27 | JEULAND-TRANCHANT Pascale | 61 |
28 | SPRATT Amanda | 55 |
39 | MAJERUS Christine | 56 |
55 | SANDIG Madeleine | 62 |
58 | LICHTENBERG Claudia | 52 |
59 | SCHLEICHER Regina | 58 |
60 | TEUTENBERG Ina-Yoko | 64 |
61 | FAHLIN Emilia | 63 |
65 | SELS Loes | 65 |
66 | HENRION Ludivine | 60 |
68 | CARRIGAN Sara | 60 |
76 | KASPER Romy | 59 |