Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 9
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Jodts
2
74 kgKeizer
4
72 kgPieters
5
73 kgLodewyck
7
70 kgVan Staeyen
8
62 kgVermeltfoort
9
85 kgMeisen
10
62 kgGhyselinck
14
74 kgThurau
20
73 kgDockx
21
64 kgBichlmann
23
72 kgNerz
26
67 kgPaiani
34
77 kgLindeman
39
69 kgBrun
42
73 kgVanmarcke
54
77 kgSoupe
55
70 kgSteels
56
78 kgAtzori
71
72 kgvan den Brand
110
71 kg
2
74 kgKeizer
4
72 kgPieters
5
73 kgLodewyck
7
70 kgVan Staeyen
8
62 kgVermeltfoort
9
85 kgMeisen
10
62 kgGhyselinck
14
74 kgThurau
20
73 kgDockx
21
64 kgBichlmann
23
72 kgNerz
26
67 kgPaiani
34
77 kgLindeman
39
69 kgBrun
42
73 kgVanmarcke
54
77 kgSoupe
55
70 kgSteels
56
78 kgAtzori
71
72 kgvan den Brand
110
71 kg
Weight (KG) →
Result →
85
62
2
110
# | Rider | Weight (KG) |
---|---|---|
2 | JODTS Sven | 74 |
4 | KEIZER Martijn | 72 |
5 | PIETERS Sibrecht | 73 |
7 | LODEWYCK Klaas | 70 |
8 | VAN STAEYEN Michael | 62 |
9 | VERMELTFOORT Coen | 85 |
10 | MEISEN Marcel | 62 |
14 | GHYSELINCK Jan | 74 |
20 | THURAU Björn | 73 |
21 | DOCKX Gert | 64 |
23 | BICHLMANN Daniel | 72 |
26 | NERZ Dominik | 67 |
34 | PAIANI Jean-Lou | 77 |
39 | LINDEMAN Bert-Jan | 69 |
42 | BRUN Frederic | 73 |
54 | VANMARCKE Sep | 77 |
55 | SOUPE Geoffrey | 70 |
56 | STEELS Stijn | 78 |
71 | ATZORI Umberto | 72 |
110 | VAN DEN BRAND Twan | 71 |