Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.9 * weight + 169
This means that on average for every extra kilogram weight a rider loses -1.9 positions in the result.
Rowe
2
72 kgChristian
3
72 kgRowsell
4
66 kgVan Keirsbulck
6
89 kgVanoverberghe
8
65 kgArndt
10
77.5 kgReinhardt
15
72 kgVan Hoecke
16
78 kgThill
18
73 kgDe Pauw
25
72 kgKoep
34
78 kgVan der Sande
44
67 kgFenn
50
79 kgSleurs
68
68 kgSprengers
70
60 kgSchelling
77
61 kgVasilyev
104
70 kgKrieger
106
71 kg
2
72 kgChristian
3
72 kgRowsell
4
66 kgVan Keirsbulck
6
89 kgVanoverberghe
8
65 kgArndt
10
77.5 kgReinhardt
15
72 kgVan Hoecke
16
78 kgThill
18
73 kgDe Pauw
25
72 kgKoep
34
78 kgVan der Sande
44
67 kgFenn
50
79 kgSleurs
68
68 kgSprengers
70
60 kgSchelling
77
61 kgVasilyev
104
70 kgKrieger
106
71 kg
Weight (KG) →
Result →
89
60
2
106
# | Rider | Weight (KG) |
---|---|---|
2 | ROWE Luke | 72 |
3 | CHRISTIAN Mark | 72 |
4 | ROWSELL Erick | 66 |
6 | VAN KEIRSBULCK Guillaume | 89 |
8 | VANOVERBERGHE Arthur | 65 |
10 | ARNDT Nikias | 77.5 |
15 | REINHARDT Theo | 72 |
16 | VAN HOECKE Gijs | 78 |
18 | THILL Tom | 73 |
25 | DE PAUW Moreno | 72 |
34 | KOEP Thomas | 78 |
44 | VAN DER SANDE Tosh | 67 |
50 | FENN Andrew | 79 |
68 | SLEURS Christophe | 68 |
70 | SPRENGERS Thomas | 60 |
77 | SCHELLING Patrick | 61 |
104 | VASILYEV Maksym | 70 |
106 | KRIEGER Alexander | 71 |