Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -3.1 * weight + 273
This means that on average for every extra kilogram weight a rider loses -3.1 positions in the result.
De Jonghe
1
69 kgEising
2
80 kgVan Hoecke
5
78 kgReinders
6
78.1 kgVan Keirsbulck
8
89 kgKelderman
13
65 kgWolf
14
85 kgSchwarzmann
25
69 kgLudvigsson
46
76 kgvan der Heijden
61
63 kgWerda
67
66 kgReinert
75
69 kgMagnusson
90
71 kgDe Haan
102
68 kgMager
107
60 kgKasyanov
122
62 kgMerseburg
141
75 kg
1
69 kgEising
2
80 kgVan Hoecke
5
78 kgReinders
6
78.1 kgVan Keirsbulck
8
89 kgKelderman
13
65 kgWolf
14
85 kgSchwarzmann
25
69 kgLudvigsson
46
76 kgvan der Heijden
61
63 kgWerda
67
66 kgReinert
75
69 kgMagnusson
90
71 kgDe Haan
102
68 kgMager
107
60 kgKasyanov
122
62 kgMerseburg
141
75 kg
Weight (KG) →
Result →
89
60
1
141
# | Rider | Weight (KG) |
---|---|---|
1 | DE JONGHE Kevin | 69 |
2 | EISING Tijmen | 80 |
5 | VAN HOECKE Gijs | 78 |
6 | REINDERS Elmar | 78.1 |
8 | VAN KEIRSBULCK Guillaume | 89 |
13 | KELDERMAN Wilco | 65 |
14 | WOLF Justin | 85 |
25 | SCHWARZMANN Michael | 69 |
46 | LUDVIGSSON Tobias | 76 |
61 | VAN DER HEIJDEN Michiel | 63 |
67 | WERDA Maximilian | 66 |
75 | REINERT Martin | 69 |
90 | MAGNUSSON Kim | 71 |
102 | DE HAAN Binne-Pier | 68 |
107 | MAGER Christian | 60 |
122 | KASYANOV Oleksiy | 62 |
141 | MERSEBURG Dominik | 75 |