Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.1 * weight + 191
This means that on average for every extra kilogram weight a rider loses -2.1 positions in the result.
De Jonghe
1
69 kgVan Keirsbulck
2
89 kgLudvigsson
3
76 kgVan Hoecke
5
78 kgSchwarzmann
6
69 kgReinert
11
69 kgKelderman
18
65 kgReinders
21
78.1 kgEising
24
80 kgWolf
25
85 kgMager
34
60 kgKasyanov
86
62 kgMagnusson
88
71 kgWerda
103
66 kgvan der Heijden
112
63 kgMerseburg
131
75 kg
1
69 kgVan Keirsbulck
2
89 kgLudvigsson
3
76 kgVan Hoecke
5
78 kgSchwarzmann
6
69 kgReinert
11
69 kgKelderman
18
65 kgReinders
21
78.1 kgEising
24
80 kgWolf
25
85 kgMager
34
60 kgKasyanov
86
62 kgMagnusson
88
71 kgWerda
103
66 kgvan der Heijden
112
63 kgMerseburg
131
75 kg
Weight (KG) →
Result →
89
60
1
131
# | Rider | Weight (KG) |
---|---|---|
1 | DE JONGHE Kevin | 69 |
2 | VAN KEIRSBULCK Guillaume | 89 |
3 | LUDVIGSSON Tobias | 76 |
5 | VAN HOECKE Gijs | 78 |
6 | SCHWARZMANN Michael | 69 |
11 | REINERT Martin | 69 |
18 | KELDERMAN Wilco | 65 |
21 | REINDERS Elmar | 78.1 |
24 | EISING Tijmen | 80 |
25 | WOLF Justin | 85 |
34 | MAGER Christian | 60 |
86 | KASYANOV Oleksiy | 62 |
88 | MAGNUSSON Kim | 71 |
103 | WERDA Maximilian | 66 |
112 | VAN DER HEIJDEN Michiel | 63 |
131 | MERSEBURG Dominik | 75 |