Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.1 * weight + 199
This means that on average for every extra kilogram weight a rider loses -2.1 positions in the result.
Krupa
5
74 kgPawlak
7
73 kgKiendyś
8
78 kgSivakov
11
72 kgLisowicz
12
85 kgPrzydział
15
80 kgSapa
16
82 kgLjungblad
18
70 kgHoffmann
24
65 kgMazur
32
73 kgMickiewicz
35
74 kgKukk
45
74 kgGajek
50
74 kgMarkov
75
80 kgRiška
76
73 kgWitecki
79
70 kgvan Groen
81
69 kgBodnar
96
68 kgOjavee
100
80 kgSchröder
103
64 kg
5
74 kgPawlak
7
73 kgKiendyś
8
78 kgSivakov
11
72 kgLisowicz
12
85 kgPrzydział
15
80 kgSapa
16
82 kgLjungblad
18
70 kgHoffmann
24
65 kgMazur
32
73 kgMickiewicz
35
74 kgKukk
45
74 kgGajek
50
74 kgMarkov
75
80 kgRiška
76
73 kgWitecki
79
70 kgvan Groen
81
69 kgBodnar
96
68 kgOjavee
100
80 kgSchröder
103
64 kg
Weight (KG) →
Result →
85
64
5
103
# | Rider | Weight (KG) |
---|---|---|
5 | KRUPA Dawid | 74 |
7 | PAWLAK Wojciech | 73 |
8 | KIENDYŚ Tomasz | 78 |
11 | SIVAKOV Alexei | 72 |
12 | LISOWICZ Tomasz | 85 |
15 | PRZYDZIAŁ Piotr | 80 |
16 | SAPA Marcin | 82 |
18 | LJUNGBLAD Jonas | 70 |
24 | HOFFMANN Erik | 65 |
32 | MAZUR Peter | 73 |
35 | MICKIEWICZ Jacek | 74 |
45 | KUKK Sigvard | 74 |
50 | GAJEK Artur | 74 |
75 | MARKOV Alexei | 80 |
76 | RIŠKA Martin | 73 |
79 | WITECKI Mariusz | 70 |
81 | VAN GROEN Arnoud | 69 |
96 | BODNAR Łukasz | 68 |
100 | OJAVEE Mart | 80 |
103 | SCHRÖDER Björn | 64 |