Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 115
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Kiendyś
1
78 kgSapa
2
82 kgPawlak
3
73 kgMahorič
4
68 kgHuzarski
5
69 kgLisowicz
6
85 kgGolčer
11
66.5 kgChmielewski
17
72 kgVorganov
18
65 kgZamana
19
74 kgKvasina
22
72 kgRiška
24
73 kgRomanik
26
62 kgMatysiak
31
71 kgBenčík
35
73 kgKomar
36
73 kgWitecki
39
70 kgOjavee
43
80 kgTombak
47
71 kgAndrle
56
70 kgBrożyna
57
65 kgRutkiewicz
58
66 kgRogina
65
70 kg
1
78 kgSapa
2
82 kgPawlak
3
73 kgMahorič
4
68 kgHuzarski
5
69 kgLisowicz
6
85 kgGolčer
11
66.5 kgChmielewski
17
72 kgVorganov
18
65 kgZamana
19
74 kgKvasina
22
72 kgRiška
24
73 kgRomanik
26
62 kgMatysiak
31
71 kgBenčík
35
73 kgKomar
36
73 kgWitecki
39
70 kgOjavee
43
80 kgTombak
47
71 kgAndrle
56
70 kgBrożyna
57
65 kgRutkiewicz
58
66 kgRogina
65
70 kg
Weight (KG) →
Result →
85
62
1
65
# | Rider | Weight (KG) |
---|---|---|
1 | KIENDYŚ Tomasz | 78 |
2 | SAPA Marcin | 82 |
3 | PAWLAK Wojciech | 73 |
4 | MAHORIČ Mitja | 68 |
5 | HUZARSKI Bartosz | 69 |
6 | LISOWICZ Tomasz | 85 |
11 | GOLČER Jure | 66.5 |
17 | CHMIELEWSKI Piotr | 72 |
18 | VORGANOV Eduard | 65 |
19 | ZAMANA Cezary | 74 |
22 | KVASINA Matija | 72 |
24 | RIŠKA Martin | 73 |
26 | ROMANIK Radosław | 62 |
31 | MATYSIAK Bartłomiej | 71 |
35 | BENČÍK Petr | 73 |
36 | KOMAR Mateusz | 73 |
39 | WITECKI Mariusz | 70 |
43 | OJAVEE Mart | 80 |
47 | TOMBAK Janek | 71 |
56 | ANDRLE René | 70 |
57 | BROŻYNA Tomasz | 65 |
58 | RUTKIEWICZ Marek | 66 |
65 | ROGINA Radoslav | 70 |