Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 2
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Owsian
1
66 kgGrošelj
2
62 kgTratnik
3
67 kgKaňkovský
4
83 kgBárta
5
75 kgSchelling
6
61 kgStępniak
7
75 kgSajnok
9
75 kgČerný
10
75 kgGradek
11
83 kgLatoń
12
76 kgGrabis
13
75 kgMuff
14
78 kgLašinis
15
69 kgMarycz
16
69 kgThalmann
17
61 kgKessler
18
78 kgOrrico
19
70 kg
1
66 kgGrošelj
2
62 kgTratnik
3
67 kgKaňkovský
4
83 kgBárta
5
75 kgSchelling
6
61 kgStępniak
7
75 kgSajnok
9
75 kgČerný
10
75 kgGradek
11
83 kgLatoń
12
76 kgGrabis
13
75 kgMuff
14
78 kgLašinis
15
69 kgMarycz
16
69 kgThalmann
17
61 kgKessler
18
78 kgOrrico
19
70 kg
Weight (KG) →
Result →
83
61
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | OWSIAN Łukasz | 66 |
2 | GROŠELJ Žiga | 62 |
3 | TRATNIK Jan | 67 |
4 | KAŇKOVSKÝ Alois | 83 |
5 | BÁRTA Jan | 75 |
6 | SCHELLING Patrick | 61 |
7 | STĘPNIAK Grzegorz | 75 |
9 | SAJNOK Szymon | 75 |
10 | ČERNÝ Josef | 75 |
11 | GRADEK Kamil | 83 |
12 | LATOŃ Eryk | 76 |
13 | GRABIS Mateusz | 75 |
14 | MUFF Frederik | 78 |
15 | LAŠINIS Venantas | 69 |
16 | MARYCZ Jarosław | 69 |
17 | THALMANN Roland | 61 |
18 | KESSLER Robert | 78 |
19 | ORRICO Davide | 70 |