Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 13
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Zieliński
1
61 kgFortin
2
78 kgSajnok
4
75 kgButs
5
68 kgRajović
6
74 kgPer
7
68 kgAfewerki
8
63 kgPaluta
10
65 kgDomagalski
11
77 kgFranczak
13
63 kgNikitin
14
61 kgPawlak
15
81 kgKrizek
17
74 kgManakov
19
77 kgRudys
21
60 kgKorošec
22
75 kgKrul
23
68 kgPodlaski
24
68 kgErshov
26
70 kg
1
61 kgFortin
2
78 kgSajnok
4
75 kgButs
5
68 kgRajović
6
74 kgPer
7
68 kgAfewerki
8
63 kgPaluta
10
65 kgDomagalski
11
77 kgFranczak
13
63 kgNikitin
14
61 kgPawlak
15
81 kgKrizek
17
74 kgManakov
19
77 kgRudys
21
60 kgKorošec
22
75 kgKrul
23
68 kgPodlaski
24
68 kgErshov
26
70 kg
Weight (KG) →
Result →
81
60
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | ZIELIńSKI Kamil | 61 |
2 | FORTIN Filippo | 78 |
4 | SAJNOK Szymon | 75 |
5 | BUTS Vitaliy | 68 |
6 | RAJOVIĆ Dušan | 74 |
7 | PER Gorazd | 68 |
8 | AFEWERKI Elyas | 63 |
10 | PALUTA Michał | 65 |
11 | DOMAGALSKI Karol | 77 |
13 | FRANCZAK Paweł | 63 |
14 | NIKITIN Matvey | 61 |
15 | PAWLAK Tobiasz | 81 |
17 | KRIZEK Matthias | 74 |
19 | MANAKOV Victor | 77 |
21 | RUDYS Paul | 60 |
22 | KOROŠEC Rok | 75 |
23 | KRUL Stef | 68 |
24 | PODLASKI Michał | 68 |
26 | ERSHOV Artur | 70 |