Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 38
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Eeckhout
1
73 kgOmloop
2
78 kgKnaven
3
68 kgPiziks
4
70 kgHunt
6
76 kgVan Petegem
7
70 kgBlijlevens
8
70 kgLöwik
9
72 kgVierhouten
10
71 kgSchmitz
12
77 kgBak
13
76 kgVan Hyfte
14
70 kgKashechkin
15
70 kgvan Dijk
17
74 kgGardeyn
19
75 kgde Jongh
20
76 kgScheirlinckx
21
67 kgGrabsch
22
81 kgMuravyev
26
75 kgMuseeuw
27
71 kgChadwick
28
75 kgArvesen
29
74 kgHayman
30
78 kg
1
73 kgOmloop
2
78 kgKnaven
3
68 kgPiziks
4
70 kgHunt
6
76 kgVan Petegem
7
70 kgBlijlevens
8
70 kgLöwik
9
72 kgVierhouten
10
71 kgSchmitz
12
77 kgBak
13
76 kgVan Hyfte
14
70 kgKashechkin
15
70 kgvan Dijk
17
74 kgGardeyn
19
75 kgde Jongh
20
76 kgScheirlinckx
21
67 kgGrabsch
22
81 kgMuravyev
26
75 kgMuseeuw
27
71 kgChadwick
28
75 kgArvesen
29
74 kgHayman
30
78 kg
Weight (KG) →
Result →
81
67
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | EECKHOUT Niko | 73 |
2 | OMLOOP Geert | 78 |
3 | KNAVEN Servais | 68 |
4 | PIZIKS Arvis | 70 |
6 | HUNT Jeremy | 76 |
7 | VAN PETEGEM Peter | 70 |
8 | BLIJLEVENS Jeroen | 70 |
9 | LÖWIK Gerben | 72 |
10 | VIERHOUTEN Aart | 71 |
12 | SCHMITZ Bram | 77 |
13 | BAK Lars Ytting | 76 |
14 | VAN HYFTE Paul | 70 |
15 | KASHECHKIN Andrey | 70 |
17 | VAN DIJK Stefan | 74 |
19 | GARDEYN Gorik | 75 |
20 | DE JONGH Steven | 76 |
21 | SCHEIRLINCKX Bert | 67 |
22 | GRABSCH Ralf | 81 |
26 | MURAVYEV Dmitriy | 75 |
27 | MUSEEUW Johan | 71 |
28 | CHADWICK Glen Alan | 75 |
29 | ARVESEN Kurt-Asle | 74 |
30 | HAYMAN Mathew | 78 |